1
|
Yu X, Yan Y, Zeng J, Liu Y, Sun X, Wang Z, Li L. T6SS nuclease effectors in Pseudomonas syringae act as potent antimicrobials in interbacterial competition. J Bacteriol 2024; 206:e0027323. [PMID: 38717111 PMCID: PMC11332151 DOI: 10.1128/jb.00273-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/09/2024] [Indexed: 06/21/2024] Open
Abstract
Type VI secretion system (T6SS) is a potent weapon employed by various Pseudomonas species to compete with neighboring microorganisms for limited nutrients and ecological niches. However, the involvement of T6SS effectors in interbacterial competition within the phytopathogen Pseudomonas syringae remains unknown. In this study, we examined two T6SS clusters in a wild-type P. syringae MB03 and verified the involvement of one cluster, namely, T6SS-1, in interbacterial competition. Additionally, our results showed that two T6SS DNase effectors, specifically Tde1 and Tde4, effectively outcompeted antagonistic bacteria, with Tde4 playing a prominent role. Furthermore, we found several cognate immunity proteins, including Tde1ia, Tde1ib, and Tde4i, which are located in the downstream loci of their corresponding effector protein genes and worked synergistically to protect MB03 cells from self-intoxication. Moreover, expression of either Tde1 or C-terminus of Tde4 in Escherichia coli cells induced DNA degradation and changes in cell morphology. Thus, our results provide new insights into the role of the T6SS effectors of P. syringae in the interbacterial competition in the natural environment. IMPORTANCE The phytopathogen Pseudomonas syringae employs an active type VI secretion system (T6SS) to outcompete other microorganisms in the natural environment, particularly during the epiphytic growth in the phyllosphere. By examining two T6SS clusters in P. syringae MB03, T6SS-1 is found to be effective in killing Escherichia coli cells. We highlight the excellent antibacterial effect of two T6SS DNase effectors, namely, Tde1 and Tde4. Both of them function as nuclease effectors, leading to DNA degradation and cell filamentation in prey cells, ultimately resulting in cell death. Our findings deepen our understanding of the T6SS effector repertoires used in P. syringae and will facilitate the development of effective antibacterial strategies.
Collapse
Affiliation(s)
- Xun Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), Hubei University of Technology, Wuhan, China
| | - Yubo Yan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jie Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Yongxuan Liu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Xiaowen Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Zhiyong Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Lin Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Li X, Zhang B, Hu Q, Chen C, Huang J, Liu L, Wang S. Refinement of the Fusion Tag PagP for Effective Formation of Inclusion Bodies in Escherichia coli. Microbiol Spectr 2023; 11:e0380322. [PMID: 37222613 PMCID: PMC10269538 DOI: 10.1128/spectrum.03803-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/05/2023] [Indexed: 05/25/2023] Open
Abstract
Methods for efficient insoluble protein production require further exploration. PagP, an Escherichia coli outer membrane protein with high β-sheet content, could function as an efficient fusion partner for inclusion body-targeted expression of recombinant peptides. The primary structure of a given polypeptide determines to a large extent its propensity to aggregate. Herein, aggregation "hot spots" (HSs) in PagP were analyzed using the web-based software AGGRESCAN, leading to identification of a C-terminal region harboring numerous HSs. Moreover, a proline-rich region was found in the β-strands. Substitution of these prolines by residues with high β-sheet propensity and hydrophobicity significantly improved its ability to form aggregates. Consequently, the absolute yields of recombinant antimicrobial peptides Magainin II, Metchnikowin, and Andropin were increased significantly when expressed in fusion with this refined version of PagP. We describe separation of recombinant target proteins expressed in inclusion bodies fused with the tag. An artificial NHT linker peptide with three motifs was implemented for separation and purification of authentic recombinant antimicrobial peptides. IMPORTANCE Fusion tag-induced formation of inclusion bodies provides a powerful means to express unstructured or toxic proteins. For a given fusion tag, how to enhance the formation of inclusion bodies remains to be explored. Our study illustrated that the aggregation HSs in a fusion tag played important roles in mediating its insoluble expression. Efficient production of inclusion bodies could also be implemented by refining its primary structure to form a more stable β-sheet with higher hydrophobicity. This study provides a promising method for improvement of the insoluble expression of recombinant proteins.
Collapse
Affiliation(s)
- Xuefeng Li
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Baorong Zhang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Quan Hu
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Changchao Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Jiahua Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Lu Liu
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| | - Shengbin Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou, People’s Republic of China
| |
Collapse
|
3
|
Connor A, Wigham C, Bai Y, Rai M, Nassif S, Koffas M, Zha RH. Novel insights into construct toxicity, strain optimization, and primary sequence design for producing recombinant silk fibroin and elastin-like peptide in E. coli. Metab Eng Commun 2023; 16:e00219. [PMID: 36825067 PMCID: PMC9941211 DOI: 10.1016/j.mec.2023.e00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Spider silk proteins (spidroins) are a remarkable class of biomaterials that exhibit a unique combination of high-value attributes and can be processed into numerous morphologies for targeted applications in diverse fields. Recombinant production of spidroins represents the most promising route towards establishing the industrial production of the material, however, recombinant spider silk production suffers from fundamental difficulties that includes low titers, plasmid instability, and translational inefficiencies. In this work, we sought to gain a deeper understanding of upstream bottlenecks that exist in the field through the production of a panel of systematically varied spidroin sequences in multiple E. coli strains. A restriction on basal expression and specific genetic mutations related to stress responses were identified as primary factors that facilitated higher titers of the recombinant silk constructs. Using these findings, a novel strain of E. coli was created that produces recombinant silk constructs at levels 4-33 times higher than standard BL21(DE3). However, these findings did not extend to a similar recombinant protein, an elastin-like peptide. It was found that the recombinant silk proteins, but not the elastin-like peptide, exert toxicity on the E. coli host system, possibly through their high degree of intrinsic disorder. Along with strain engineering, a bioprocess design that utilizes longer culturing times and attenuated induction was found to raise recombinant silk titers by seven-fold and mitigate toxicity. Targeted alteration to the primary sequence of the recombinant silk constructs was also found to mitigate toxicity. These findings identify multiple points of focus for future work seeking to further optimize the recombinant production of silk proteins and is the first work to identify the intrinsic disorder and subsequent toxicity of certain spidroin constructs as a primary factor related to the difficulties of production.
Collapse
Affiliation(s)
- Alexander Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Caleb Wigham
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Yang Bai
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Manish Rai
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Sebastian Nassif
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
4
|
Mahmud Z, Dhami PS, Rans C, Liu PB, Hwang PM. Dilated Cardiomyopathy Mutations and Phosphorylation disrupt the Active Orientation of Cardiac Troponin C. J Mol Biol 2021; 433:167010. [PMID: 33901537 DOI: 10.1016/j.jmb.2021.167010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/07/2021] [Accepted: 04/20/2021] [Indexed: 11/28/2022]
Abstract
Cardiac troponin (cTn) is made up of three subunits, cTnC, cTnI, and cTnT. The regulatory N-terminal domain of cTnC (cNTnC) controls cardiac muscle contraction in a calcium-dependent manner. We show that calcium-saturated cNTnC can adopt two different orientations, with the "active" orientation consistent with the 2020 cryo-EM structure of the activated cardiac thin filament by Yamada et al. Using solution NMR 15N R2 relaxation analysis, we demonstrate that the two domains of cTnC tumble independently (average R2 10 s-1), being connected by a flexible linker. However, upon addition of cTnI1-77, the complex tumbles as a rigid unit (R2 30 s-1). cTnI phosphomimetic mutants S22D/S23D, S41D/S43D and dilated cardiomyopathy- (DCM-)associated mutations cTnI K35Q, cTnC D75Y, and cTnC G159D destabilize the active orientation of cNTnC, with intermediate 15N R2 rates (R2 17-23 s-1). The active orientation of cNTnC is stabilized by the flexible tails of cTnI, cTnI1-37 and cTnI135-209. Surprisingly, when cTnC is incorporated into complexes lacking these tails (cTnC-cTnI38-134, cTnC-cTnT223-288, or cTnC-cTnI38-134-cTnT223-288), the cNTnC domain is still immobilized, revealing a new interaction between cNTnC and the IT-arm that stabilizes a "dormant" orientation. We propose that the calcium sensitivity of the cardiac troponin complex is regulated by an equilibrium between active and dormant orientations, which can be shifted through post-translational modifications or DCM-associated mutations.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Prabhpaul S Dhami
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Caleb Rans
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Philip B Liu
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; Department of Medicine, University of Alberta, Edmonton, AB T6G 2R3, Canada.
| |
Collapse
|
5
|
Jong WSP, Ten Hagen-Jongman CM, Vikström D, Dontje W, Abdallah AM, de Gier JW, Bitter W, Luirink J. Mutagenesis-Based Characterization and Improvement of a Novel Inclusion Body Tag. Front Bioeng Biotechnol 2020; 7:442. [PMID: 31998707 PMCID: PMC6965018 DOI: 10.3389/fbioe.2019.00442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Whereas, bacterial inclusion bodies (IBs) for long were regarded as undesirable aggregates emerging during recombinant protein production, they currently receive attention as promising nanoparticulate biomaterials with diverse applications in biotechnology and biomedicine. We previously identified ssTorA, a signal sequence that normally directs protein export via the Tat pathway in E. coli, as a tag that induces the accumulation of fused proteins into IBs under overexpression conditions. Here, we used targeted mutagenesis to identify features and motifs being either critical or dispensable for IB formation. We found that IB formation is neither related to the function of ssTorA as a Tat-signal sequence nor is it a general feature of this family of signal sequences. IB formation was inhibited by co-overexpression of ssTorA binding chaperones TorD and DnaK and by amino acid substitutions that affect the propensity of ssTorA to form an α-helix. Systematic deletion experiments identified a minimal region of ssTorA required for IB formation in the center of the signal sequence. Unbiased genetic screening of a library of randomly mutagenized ssTorA sequences for reduced aggregation properties allowed us to pinpoint residues that are critical to sustain insoluble expression. Together, the data point to possible mechanisms for the aggregation of ssTorA fusions. Additionally, they led to the design of a tag with superior IB-formation properties compared to the original ssTorA sequence.
Collapse
Affiliation(s)
- Wouter S P Jong
- Abera Bioscience AB, Solna, Sweden.,Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | - Corinne M Ten Hagen-Jongman
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| | | | - Wendy Dontje
- Department of Clinical Immunology and Rheumatology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Abdallah M Abdallah
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Wilbert Bitter
- Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands.,Medical Microbiology and Infection Control, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Joen Luirink
- Abera Bioscience AB, Solna, Sweden.,Department of Molecular Microbiology, Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Vrije Universiteit, Amsterdam, Netherlands
| |
Collapse
|
6
|
Ki MR, Pack SP. Fusion tags to enhance heterologous protein expression. Appl Microbiol Biotechnol 2020; 104:2411-2425. [DOI: 10.1007/s00253-020-10402-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
|
7
|
Fukuda E, Mori M, Shiku H, Miyahara Y, Kawamura Y, Ogawa K, Ogura T, Goshima N. Development of INSOL-tag for proteome-wide protein handling and its application in protein array analysis. Genes Cells 2019; 25:41-53. [PMID: 31733161 DOI: 10.1111/gtc.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022]
Abstract
Proteomic analysis requires protein tags that enable high-throughput handling; however, versatile tags that can be used in in vitro expression systems are currently lacking. In this study, we developed an insoluble protein tag, INSOL-tag, derived from human transcription factor MafG. The INSOL-tagged target protein is expressed in a eukaryotic in vitro expression system and recovered as a pellet following centrifugation at 19,000 × g for 20 min. Comparisons of the target protein recovery rates of GST-tag and INSOL-tag using 111 cytoplasmic proteins revealed a fourfold increase in the yield of INSOL-tagged proteins. Using 267 cancer antigens purified with INSOL-tag, we subsequently developed an INSOL-CTA array method, for profiling autoantibodies in sera of cancer patients. The detection limit of the array was approximately 11.1 pg IgG, and the correlation with ELISA was high (R2 = .993, .955). Moreover, when autoantibody profiling of digestive cancer patient sera was performed, antigen spreading was observed. These data suggest that INSOL-tag is a versatile tag that can insolubilize a wide range of target proteins. It is therefore expected to become a powerful tool in comprehensive protein preparation for protein arrays, antibody production, and mass spectrometry.
Collapse
Affiliation(s)
- Eriko Fukuda
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masatoshi Mori
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiro Miyahara
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | | | - Koji Ogawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| | - Toshihiko Ogura
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Koto-ku, Tokyo, Japan
| |
Collapse
|
8
|
Efficient and robust preparation of tyrosine phosphorylated intrinsically disordered proteins. Biotechniques 2019; 67:16-22. [PMID: 31092000 DOI: 10.2144/btn-2019-0033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are subject to post-translational modifications. This allows the same polypeptide to be involved in different interaction networks with different consequences, ranging from regulatory signalling networks to the formation of membrane-less organelles. We report a robust method for co-expression of modification enzyme and SUMO-tagged IDPs with a subsequent purification procedure that allows for the production of modified IDP. The robustness of our protocol is demonstrated using a challenging system: RNA polymerase II C-terminal domain (CTD); that is, a low-complexity repetitive region with multiple phosphorylation sites. In vitro phosphorylation approaches fail to yield multiple-site phosphorylated CTD, whereas our in vivo protocol allows the rapid production of near homogeneous phosphorylated CTD at a low cost. These samples can be used in functional and structural studies.
Collapse
|
9
|
Structure and proteolytic susceptibility of the inhibitory C-terminal tail of cardiac troponin I. Biochim Biophys Acta Gen Subj 2019; 1863:661-671. [DOI: 10.1016/j.bbagen.2019.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/22/2018] [Accepted: 01/14/2019] [Indexed: 01/17/2023]
|
10
|
Bafaro EM, Maciejewski MW, Hoch JC, Dempski RE. Concomitant disorder and high-affinity zinc binding in the human zinc- and iron-regulated transport protein 4 intracellular loop. Protein Sci 2019; 28:868-880. [PMID: 30793391 DOI: 10.1002/pro.3591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/21/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022]
Abstract
The human zinc- and iron-regulated transport protein 4 (hZIP4) protein is the major plasma membrane protein responsible for the uptake of zinc in the body, and as such it plays a key role in cellular zinc homeostasis. hZIP4 plasma membrane levels are regulated through post-translational modification of its large, disordered, histidine-rich cytosolic loop (ICL2) in response to intracellular zinc concentrations. Here, structural characteristics of the isolated disordered loop region, both in the absence and presence of zinc, were investigated using nuclear magnetic resonance (NMR) spectroscopy. NMR chemical shifts, coupling constants and temperature coefficients of the apoprotein, are consistent with a random coil with minor propensities for transient polyproline Type II helices and β-strand in regions implicated in post-translational modifications. The ICL2 protein remains disordered upon zinc binding, which induces exchange broadening. Paramagnetic relaxation enhancement experiments reveal that the histidine-rich region in the apoprotein makes transient tertiary contacts with predicted post-translational modification sites. The residue-specific data presented here strengthen the relationship between hZIP4 post-translational modifications, which impact its role in cellular zinc homeostasis, and zinc sensing by the intracellular loop. Furthermore, the zinc sensing mechanism employed by the ICL2 protein demonstrates that high-affinity interactions can occur in the presence of conformational disorder.
Collapse
Affiliation(s)
- Elizabeth M Bafaro
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| | - Mark W Maciejewski
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, Connecticut 06030
| | - Robert E Dempski
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts 01609
| |
Collapse
|
11
|
Li MX, Gelozia S, Danmaliki GI, Wen Y, Liu PB, Lemieux MJ, West FG, Sykes BD, Hwang PM. The calcium sensitizer drug MCI-154 binds the structural C-terminal domain of cardiac troponin C. Biochem Biophys Rep 2018; 16:145-151. [PMID: 30417133 PMCID: PMC6218639 DOI: 10.1016/j.bbrep.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 11/27/2022] Open
Abstract
The compound MCI-154 was previously shown to increase the calcium sensitivity of cardiac muscle contraction. Using solution NMR spectroscopy, we demonstrate that MCI-154 interacts with the calcium-sensing subunit of the cardiac troponin complex, cardiac troponin C (cTnC). Surprisingly, however, it binds only to the structural C-terminal domain of cTnC (cCTnC), and not to the regulatory N-terminal domain (cNTnC) that determines the calcium sensitivity of cardiac muscle. Physiologically, cTnC is always bound to cardiac troponin I (cTnI), so we examined its interaction with MCI-154 in the presence of two soluble constructs, cTnI1–77 and cTnI135–209, which contain all of the segments of cTnI known to interact with cTnC. Neither the cTnC-cTnI1–77 complex nor the cTnC-cTnI135–209 complex binds to MCI-154. Since residues 39–60 of cTnI are known to bind tightly to the cCTnC domain to form a structured core that is invariant throughout the cardiac cycle, we conclude that MCI-154 does not bind to cTnC when it is part of the intact cardiac troponin complex. Thus, MCI-154 likely exerts its calcium sensitizing effect by interacting with a target other than cardiac troponin. MCI-154 is a small molecule calcium sensitizer in cardiac muscle. The N-domain of cardiac troponin C controls calcium sensitivity in cardiac muscle. MCI-154 binds weakly to the promiscuous C-terminal domain of troponin C. Cardiac troponin C does not bind MCI-154 in the presence of troponin I. MCI-154 does not exert its calcium sensitizing effect directly through troponin C.
Collapse
Affiliation(s)
- Monica X Li
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Shorena Gelozia
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Gaddafi I Danmaliki
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Yurong Wen
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.,School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Frederick G West
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Peter M Hwang
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada T6G 2R3.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| |
Collapse
|
12
|
Production of the recombinant antimicrobial peptide UBI 18-35 in Escherichia coli. Protein Expr Purif 2018; 143:38-44. [DOI: 10.1016/j.pep.2017.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 11/21/2022]
|
13
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018; 106:803-822. [DOI: 10.1016/j.ijbiomac.2017.08.080] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/02/2017] [Accepted: 08/12/2017] [Indexed: 12/29/2022]
|
14
|
Kaur J, Kumar A, Kaur J. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. Int J Biol Macromol 2018. [DOI: 10.1016/j.ijbiomac.2017.08.080 10.1242/jeb.069716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
15
|
Hoffmann D, Ebrahimi M, Gerlach D, Salzig D, Czermak P. Reassessment of inclusion body-based production as a versatile opportunity for difficult-to-express recombinant proteins. Crit Rev Biotechnol 2017; 38:729-744. [DOI: 10.1080/07388551.2017.1398134] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Daniel Hoffmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Mehrdad Ebrahimi
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Doreen Gerlach
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
| | - Denise Salzig
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
| | - Peter Czermak
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project group Bioresources, Giessen, Germany
- Faculty of Biology and Chemistry, Justus Liebig University, Giessen, Germany
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
16
|
Jørgensen ML, Møller CK, Rasmussen L, Boisen L, Pedersen H, Kristensen P. An anti vimentin antibody promotes tube formation. Sci Rep 2017; 7:3576. [PMID: 28620205 PMCID: PMC5472577 DOI: 10.1038/s41598-017-03799-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/18/2017] [Indexed: 12/02/2022] Open
Abstract
In recent years, there has been an increasing appreciation of the importance of secreted and extracellular proteins that traditionally have been considered as intracellular components. Vimentin is a highly abundant intermediate filament protein, and its intracellular functions have been investigated in a large number of studies. Recently, however, vimentin has been shown to take part in significant processes outside the cell. Our understanding of the functions of extracellular vimentin is, however, limited. In this study we demonstrate that a vimentin specific antibody, obtained by phage antibody technology, promotes tube formation of endothelial cells in a 2D matrigel assay. By binding vimentin, the antibody increases the tube formation by 21% after 5 hours of incubation. Addition of the antibody directly to cultured endothelial cells does not influence endothelial cell migration or proliferation. The enhanced tube formation can be seen for up to 10 hours where after the effect decreases. It is shown that the antibody-binding site is located on the coil 2 domain of vimentin. To our knowledge this is the first study that demonstrates an enhanced tube formation by binding vimentin in a 2D matrigel assay under normoxic conditions.
Collapse
Affiliation(s)
| | - Carina Kjeldahl Møller
- Department of Molecular biology, Gustav Wieds Vej 10, Aarhus University, 8000, Aarhus C, Denmark
| | - Lasse Rasmussen
- Department of Molecular biology, Gustav Wieds Vej 10, Aarhus University, 8000, Aarhus C, Denmark
| | - Louise Boisen
- Department of Molecular biology, Gustav Wieds Vej 10, Aarhus University, 8000, Aarhus C, Denmark
| | - Henrik Pedersen
- Department of Engineering, Gustav Wieds Vej 10, Aarhus University, 8000, Aarhus C, Denmark
| | - Peter Kristensen
- Department of Engineering, Gustav Wieds Vej 10, Aarhus University, 8000, Aarhus C, Denmark.
| |
Collapse
|
17
|
Jong WSP, Vikström D, Houben D, van den Berg van Saparoea HB, de Gier JW, Luirink J. Application of an E. coli signal sequence as a versatile inclusion body tag. Microb Cell Fact 2017; 16:50. [PMID: 28320377 PMCID: PMC5359840 DOI: 10.1186/s12934-017-0662-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/10/2017] [Indexed: 12/18/2022] Open
Abstract
Background Heterologous protein production in Escherichia coli often suffers from bottlenecks such as proteolytic degradation, complex purification procedures and toxicity towards the expression host. Production of proteins in an insoluble form in inclusion bodies (IBs) can alleviate these problems. Unfortunately, the propensity of heterologous proteins to form IBs is variable and difficult to predict. Hence, fusing the target protein to an aggregation prone polypeptide or IB-tag is a useful strategy to produce difficult-to-express proteins in an insoluble form. Results When screening for signal sequences that mediate optimal targeting of heterologous proteins to the periplasmic space of E. coli, we observed that fusion to the 39 amino acid signal sequence of E. coli TorA (ssTorA) did not promote targeting but rather directed high-level expression of the human proteins hEGF, Pla2 and IL-3 in IBs. Further analysis revealed that ssTorA even mediated IB formation of the highly soluble endogenous E. coli proteins TrxA and MBP. The ssTorA also induced aggregation when fused to the C-terminus of target proteins and appeared functional as IB-tag in E. coli K-12 as well as B strains. An additive effect on IB-formation was observed upon fusion of multiple ssTorA sequences in tandem, provoking almost complete aggregation of TrxA and MBP. The ssTorA-moiety was successfully used to produce the intrinsically unstable hEGF and the toxic fusion partner SymE, demonstrating its applicability as an IB-tag for difficult-to-express and toxic proteins. Conclusions We present proof-of-concept for the use of ssTorA as a small, versatile tag for robust E. coli-based expression of heterologous proteins in IBs. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0662-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wouter S P Jong
- Abera Bioscience AB, 11145, Stockholm, Sweden. .,Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | | | | | | | - Jan-Willem de Gier
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 10691, Stockholm, Sweden
| | - Joen Luirink
- Abera Bioscience AB, 11145, Stockholm, Sweden. .,Department of Molecular Cell Biology, Section Molecular Microbiology, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Rinas U, Garcia-Fruitós E, Corchero JL, Vázquez E, Seras-Franzoso J, Villaverde A. Bacterial Inclusion Bodies: Discovering Their Better Half. Trends Biochem Sci 2017; 42:726-737. [PMID: 28254353 DOI: 10.1016/j.tibs.2017.01.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/23/2017] [Accepted: 01/26/2017] [Indexed: 01/07/2023]
Abstract
Bacterial inclusion bodies (IBs) are functional, non-toxic amyloids occurring in recombinant bacteria showing analogies with secretory granules of the mammalian endocrine system. The scientific interest in these mesoscale protein aggregates has been historically masked by their status as a hurdle in recombinant protein production. However, progressive understanding of how the cell handles the quality of recombinant polypeptides and the main features of their intriguing molecular organization has stimulated the interest in inclusion bodies and spurred their use in diverse technological fields. The engineering and tailoring of IBs as functional protein particles for materials science and biomedicine is a good example of how formerly undesired bacterial byproducts can be rediscovered as promising functional materials for a broad spectrum of applications.
Collapse
Affiliation(s)
- Ursula Rinas
- Leibniz University of Hannover, Technical Chemistry and Life Science, Hannover, Germany; Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - José Luis Corchero
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Esther Vázquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Molecular Biology and Biochemistry Research Center for Nanomedicine (Cibbim-Nanomedicine), Hospital Vall d'Hebron, Passeig de la Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Cerdanyola del Vallès, Spain; Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
19
|
Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N. An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 2016; 612:57-77. [DOI: 10.1016/j.abb.2016.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 10/15/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
|
20
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
21
|
Lin Z, Zhao Q, Xing L, Zhou B, Wang X. Aggregating tags for column-free protein purification. Biotechnol J 2015; 10:1877-86. [PMID: 26556016 DOI: 10.1002/biot.201500299] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/27/2015] [Accepted: 10/14/2015] [Indexed: 12/30/2022]
Abstract
Protein purification remains a central need for biotechnology. In recent years, a class of aggregating tags has emerged, which offers a quick, cost-effective and column-free alternative for producing recombinant proteins (and also peptides) with yield and purity comparable to that of the popular His-tag. These column-free tags induce the formation of aggregates (during or after expression) when fused to a target protein or peptide, and upon separation from soluble impurities, the target protein or peptide is subsequently released via a cleavage site. In this review, we categorize these tags as follows: (i) tags that induce inactive protein aggregates in vivo; (ii) tags that induce active protein aggregates in vivo; and (iii) tags that induce soluble expression in vivo, but aggregates in vitro. The respective advantages and disadvantages of these tags are discussed, and compared to the three conventional tags (His-tag, maltose-binding protein [MBP] tag, and intein-mediated purification with a chitin-binding tag [IMPACT-CN]). While this new class of aggregating tags is promising, more systematic tests are required to further the use. It is conceivable, however, that the combination of these tags and the more traditional columns may significantly reduce the costs for resins and columns, particularly for the industrial scale.
Collapse
Affiliation(s)
- Zhanglin Lin
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China.
| | - Qing Zhao
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| | - Lei Xing
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| | - Bihong Zhou
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| | - Xu Wang
- Department of Chemical Engineering, National Engineering Laboratory for Industrial Enzymes, Tsinghua University, Beijing, China
| |
Collapse
|
22
|
Zahran S, Pan JS, Liu PB, Hwang PM. Combining a PagP fusion protein system with nickel ion-catalyzed cleavage to produce intrinsically disordered proteins in E. coli. Protein Expr Purif 2015; 116:133-8. [PMID: 26297994 DOI: 10.1016/j.pep.2015.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 11/16/2022]
Abstract
Many proteins contain intrinsically disordered regions that are highly solvent-exposed and susceptible to post-translational modifications. Studying these protein segments is critical to understanding their physiologic regulation, but proteolytic degradation can make them difficult to express and purify. We have designed a new protein expression vector that fuses the target protein to the N-terminus of the integral membrane protein, PagP. The two proteins are connected by a short linker containing the sequence SRHW, previously shown to be optimal for nickel ion-catalyzed cleavage. The methodology is demonstrated for an intrinsically disordered segment of cardiac troponin I. cTnI[135-209]-SRHW-PagP-His6 fusion protein was overexpressed in Escherichia coli, accumulating in insoluble inclusion bodies. The protein was solubilized, purified using nickel affinity chromatography, and then cleaved with 0.5mM NiSO4 at pH 9.0 and 45 °C, all in 6M guanidine-HCl. Nickel ion-catalyzed peptide bond hydrolysis is an effective chemical cleavage technique under denaturing conditions that preclude the use of proteases. Moreover, nickel-catalyzed cleavage is more specific than the most commonly used agent, cyanogen bromide, which cleaves C-terminal to methionine residues. We were able to produce 15 mg of purified cTnI[135-209] from 1L of M9 minimal media using this protocol. The methodology is more generally applicable to the production of intrinsically disordered protein segments.
Collapse
Affiliation(s)
- Somaya Zahran
- Division of General Internal Medicine, Department of Medicine, University of Alberta, Clinical Sciences Building Rm 5-112, Edmonton, AB T6G 2G3, Canada
| | - Jonathan S Pan
- Department of Biochemistry, University of Alberta, Medical Sciences Building Rm 4-19, Edmonton, AB T6G 2H7, Canada
| | - Philip B Liu
- Division of General Internal Medicine, Department of Medicine, University of Alberta, Clinical Sciences Building Rm 5-112, Edmonton, AB T6G 2G3, Canada
| | - Peter M Hwang
- Division of General Internal Medicine, Department of Medicine, University of Alberta, Clinical Sciences Building Rm 5-112, Edmonton, AB T6G 2G3, Canada; Department of Biochemistry, University of Alberta, Medical Sciences Building Rm 4-19, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
23
|
Zerfaß C, Braukmann S, Nietzsche S, Hobe S, Paulsen H. High yield recombinant production of a self-assembling polycationic peptide for silica biomineralization. Protein Expr Purif 2015; 108:1-8. [DOI: 10.1016/j.pep.2014.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/17/2014] [Accepted: 12/18/2014] [Indexed: 12/13/2022]
|
24
|
The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Proc Natl Acad Sci U S A 2014; 111:14412-7. [PMID: 25246568 DOI: 10.1073/pnas.1410775111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cardiac isoform of troponin I (cTnI) has a unique 31-residue N-terminal region that binds cardiac troponin C (cTnC) to increase the calcium sensitivity of the sarcomere. The interaction can be abolished by cTnI phosphorylation at Ser22 and Ser23, an important mechanism for regulating cardiac contractility. cTnC contains two EF-hand domains (the N and C domain of cTnC, cNTnC and cCTnC) connected by a flexible linker. Calcium binding to either domain favors an "open" conformation, exposing a large hydrophobic surface that is stabilized by target binding, cTnI[148-158] for cNTnC and cTnI[39-60] for cCTnC. We used multinuclear multidimensional solution NMR spectroscopy to study cTnI[1-73] in complex with cTnC. cTnI[39-60] binds to the hydrophobic face of cCTnC, stabilizing an alpha helix in cTnI[41-67] and a type VIII turn in cTnI[38-41]. In contrast, cTnI[1-37] remains disordered, although cTnI[19-37] is electrostatically tethered to the negatively charged surface of cNTnC (opposite its hydrophobic surface). The interaction does not directly affect the calcium binding affinity of cNTnC. However, it does fix the positioning of cNTnC relative to the rest of the troponin complex, similar to what was previously observed in an X-ray structure [Takeda S, et al. (2003) Nature 424(6944):35-41]. Domain positioning impacts the effective concentration of cTnI[148-158] presented to cNTnC, and this is how cTnI[19-37] indirectly modulates the calcium affinity of cNTnC within the context of the cardiac thin filament. Phosphorylation of cTnI at Ser22/23 disrupts domain positioning, explaining how it impacts many other cardiac regulatory mechanisms, like the Frank-Starling law of the heart.
Collapse
|
25
|
Wood DW. New trends and affinity tag designs for recombinant protein purification. Curr Opin Struct Biol 2014; 26:54-61. [DOI: 10.1016/j.sbi.2014.04.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 04/24/2014] [Indexed: 01/14/2023]
|
26
|
Cuozzo JW, Soutter HH. Overview of Recent Progress in Protein-Expression Technologies for Small-Molecule Screening. ACTA ACUST UNITED AC 2014; 19:1000-13. [PMID: 24525871 DOI: 10.1177/1087057114520975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/02/2014] [Indexed: 01/09/2023]
Abstract
Production of novel soluble and membrane-localized protein targets for functional and affinity-based screening has often been limited by the inability of traditional protein-expression systems to generate recombinant proteins that have properties similar to those of their endogenous counterparts. Such targets have often been labeled as challenging. Although biological validation of these challenging targets for specific disease areas may be strong, discovery of small-molecule modulators can be greatly delayed or completely halted due to target-expression issues. In this article, the limitations of traditional protein-expression systems will be discussed along with new systems designed to overcome these challenges. Recent work in this field has focused on two major areas for both soluble and membrane targets: construct-design strategies to improve expression levels and new hosts that can carry out the posttranslational modifications necessary for proper target folding and function. Another area of active research has been on the reconstitution of solubilized membrane targets for both structural analysis and screening. Finally, the potential impact of these new systems on the output of small-molecule screening campaigns will be discussed.
Collapse
|
27
|
Hwang PM, Pan JS, Sykes BD. Targeted expression, purification, and cleavage of fusion proteins from inclusion bodies in Escherichia coli. FEBS Lett 2013; 588:247-52. [PMID: 24076468 DOI: 10.1016/j.febslet.2013.09.028] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/20/2013] [Indexed: 01/24/2023]
Abstract
Today, proteins are typically overexpressed using solubility-enhancing fusion tags that allow for affinity chromatographic purification and subsequent removal by site-specific protease cleavage. In this review, we present an alternative approach to protein production using fusion partners specifically designed to accumulate in insoluble inclusion bodies. The strategy is appropriate for the mass production of short peptides, intrinsically disordered proteins, and proteins that can be efficiently refolded in vitro. There are many fusion protein systems now available for insoluble expression: TrpLE, ketosteroid isomerase, PurF, and PagP, for example. The ideal fusion partner is effective at directing a wide variety of target proteins into inclusion bodies, accumulates in large quantities in a highly pure form, and is readily solubilized and purified in commonly used denaturants. Fusion partner removal under denaturing conditions is biochemically challenging, requiring harsh conditions (e.g., cyanogen bromide in 70% formic acid) that can result in unwanted protein modifications. Recent advances in metal ion-catalyzed peptide bond cleavage allow for more mild conditions, and some methods involving nickel or palladium will likely soon appear in more biological applications.
Collapse
Affiliation(s)
- Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada; Division of General Internal Medicine, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Jonathan S Pan
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brian D Sykes
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|