1
|
Fastman NM, Liu Y, Ramanan V, Merritt H, Ambing E, DePaoli-Roach AA, Roach PJ, Hurley TD, Mellem KT, Ullman JC, Green E, Morgans D, Tzitzilonis C. The structural mechanism of human glycogen synthesis by the GYS1-GYG1 complex. Cell Rep 2022; 40:111041. [PMID: 35793618 DOI: 10.1016/j.celrep.2022.111041] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/15/2022] [Accepted: 06/11/2022] [Indexed: 11/03/2022] Open
Abstract
Glycogen is the primary energy reserve in mammals, and dysregulation of glycogen metabolism can result in glycogen storage diseases (GSDs). In muscle, glycogen synthesis is initiated by the enzymes glycogenin-1 (GYG1), which seeds the molecule by autoglucosylation, and glycogen synthase-1 (GYS1), which extends the glycogen chain. Although both enzymes are required for proper glycogen production, the nature of their interaction has been enigmatic. Here, we present the human GYS1:GYG1 complex in multiple conformations representing different functional states. We observe an asymmetric conformation of GYS1 that exposes an interface for close GYG1 association, and propose this state facilitates handoff of the GYG1-associated glycogen chain to a GYS1 subunit for elongation. Full activation of GYS1 widens the GYG1-binding groove, enabling GYG1 release concomitant with glycogen chain growth. This structural mechanism connecting chain nucleation and extension explains the apparent stepwise nature of glycogen synthesis and suggests distinct states to target for GSD-modifying therapeutics.
Collapse
Affiliation(s)
- Nathan M Fastman
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Yuxi Liu
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Vyas Ramanan
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Hanne Merritt
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Eileen Ambing
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Anna A DePaoli-Roach
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220, USA
| | - Peter J Roach
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220, USA
| | - Thomas D Hurley
- Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46220, USA
| | - Kevin T Mellem
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Julie C Ullman
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Eric Green
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - David Morgans
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA
| | - Christos Tzitzilonis
- Maze Therapeutics, 171 Oyster Point Blvd, Suite 300, South San Francisco, CA 94080, USA.
| |
Collapse
|
2
|
McCorvie TJ, Loria PM, Tu M, Han S, Shrestha L, Froese DS, Ferreira IM, Berg AP, Yue WW. Molecular basis for the regulation of human glycogen synthase by phosphorylation and glucose-6-phosphate. Nat Struct Mol Biol 2022; 29:628-638. [PMID: 35835870 PMCID: PMC9287172 DOI: 10.1038/s41594-022-00799-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/02/2022] [Indexed: 11/17/2022]
Abstract
Glycogen synthase (GYS1) is the central enzyme in muscle glycogen biosynthesis. GYS1 activity is inhibited by phosphorylation of its amino (N) and carboxyl (C) termini, which is relieved by allosteric activation of glucose-6-phosphate (Glc6P). We present cryo-EM structures at 3.0-4.0 Å resolution of phosphorylated human GYS1, in complex with a minimal interacting region of glycogenin, in the inhibited, activated and catalytically competent states. Phosphorylations of specific terminal residues are sensed by different arginine clusters, locking the GYS1 tetramer in an inhibited state via intersubunit interactions. The Glc6P activator promotes conformational change by disrupting these interactions and increases the flexibility of GYS1, such that it is poised to adopt a catalytically competent state when the sugar donor UDP-glucose (UDP-glc) binds. We also identify an inhibited-like conformation that has not transitioned into the activated state, in which the locking interaction of phosphorylation with the arginine cluster impedes subsequent conformational changes due to Glc6P binding. Our results address longstanding questions regarding the mechanism of human GYS1 regulation.
Collapse
Affiliation(s)
- Thomas J McCorvie
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Paula M Loria
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| | - Meihua Tu
- Medicine Design, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA
| | - Seungil Han
- Discovery Sciences, Worldwide Research and Development, Pfizer Inc., Groton, CT, USA
| | - Leela Shrestha
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - D Sean Froese
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Division of Metabolism and Children's Research Center, University Children's Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Igor M Ferreira
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Allison P Berg
- Rare Disease Research Unit, Worldwide Research and Development, Pfizer Inc., Cambridge, MA, USA.
| | - Wyatt W Yue
- Centre for Medicines Discovery, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
3
|
Mechanism of glycogen synthase inactivation and interaction with glycogenin. Nat Commun 2022; 13:3372. [PMID: 35690592 PMCID: PMC9188544 DOI: 10.1038/s41467-022-31109-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/02/2022] [Indexed: 11/08/2022] Open
Abstract
Glycogen is the major glucose reserve in eukaryotes, and defects in glycogen metabolism and structure lead to disease. Glycogenesis involves interaction of glycogenin (GN) with glycogen synthase (GS), where GS is activated by glucose-6-phosphate (G6P) and inactivated by phosphorylation. We describe the 2.6 Å resolution cryo-EM structure of phosphorylated human GS revealing an autoinhibited GS tetramer flanked by two GN dimers. Phosphorylated N- and C-termini from two GS protomers converge near the G6P-binding pocket and buttress against GS regulatory helices. This keeps GS in an inactive conformation mediated by phospho-Ser641 interactions with a composite “arginine cradle”. Structure-guided mutagenesis perturbing interactions with phosphorylated tails led to increased basal/unstimulated GS activity. We propose that multivalent phosphorylation supports GS autoinhibition through interactions from a dynamic “spike” region, allowing a tuneable rheostat for regulating GS activity. This work therefore provides insights into glycogen synthesis regulation and facilitates studies of glycogen-related diseases. Glycogen is a major energy reserve in eukaryotes and is synthesised in part by glycogenin (GN) and glycogen synthase (GS). Here, authors describe the structural basis of GS regulation, specifically the mechanism of inactivation by phosphorylation.
Collapse
|
4
|
Tang B, Frasinyuk MS, Chikwana VM, Mahalingan KK, Morgan CA, Segvich DM, Bondarenko SP, Mrug GP, Wyrebek P, Watt DS, DePaoli-Roach AA, Roach PJ, Hurley TD. Discovery and Development of Small-Molecule Inhibitors of Glycogen Synthase. J Med Chem 2020; 63:3538-3551. [PMID: 32134266 DOI: 10.1021/acs.jmedchem.9b01851] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The overaccumulation of glycogen appears as a hallmark in various glycogen storage diseases (GSDs), including Pompe, Cori, Andersen, and Lafora disease. Accumulating evidence suggests that suppression of glycogen accumulation represents a potential therapeutic approach for treating these GSDs. Using a fluorescence polarization assay designed to screen for inhibitors of the key glycogen synthetic enzyme, glycogen synthase (GS), we identified a substituted imidazole, (rac)-2-methoxy-4-(1-(2-(1-methylpyrrolidin-2-yl)ethyl)-4-phenyl-1H-imidazol-5-yl)phenol (H23), as a first-in-class inhibitor for yeast GS 2 (yGsy2p). Data from X-ray crystallography at 2.85 Å, as well as kinetic data, revealed that H23 bound within the uridine diphosphate glucose binding pocket of yGsy2p. The high conservation of residues between human and yeast GS in direct contact with H23 informed the development of around 500 H23 analogs. These analogs produced a structure-activity relationship profile that led to the identification of a substituted pyrazole, 4-(4-(4-hydroxyphenyl)-3-(trifluoromethyl)-1H-pyrazol-5-yl)pyrogallol, with a 300-fold improved potency against human GS. These substituted pyrazoles possess a promising scaffold for drug development efforts targeting GS activity in GSDs associated with excess glycogen accumulation.
Collapse
Affiliation(s)
- Buyun Tang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Mykhaylo S Frasinyuk
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv 02094, Ukraine.,National University of Food Technologies, Kyiv 01601, Ukraine
| | - Vimbai M Chikwana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Krishna K Mahalingan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Cynthia A Morgan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | | | - Galyna P Mrug
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv 02094, Ukraine.,National University of Food Technologies, Kyiv 01601, Ukraine
| | - Przemyslaw Wyrebek
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506, Kentucky, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington 40536, Kentucky, United States
| | - David S Watt
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40506, Kentucky, United States.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington 40536, Kentucky, United States.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, Indiana, United States
| |
Collapse
|
5
|
From the seminal discovery of proteoglycogen and glycogenin to emerging knowledge and research on glycogen biology. Biochem J 2019; 476:3109-3124. [DOI: 10.1042/bcj20190441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
AbstractAlthough the discovery of glycogen in the liver, attributed to Claude Bernard, happened more than 160 years ago, the mechanism involved in the initiation of glucose polymerization remained unknown. The discovery of glycogenin at the core of glycogen's structure and the initiation of its glucopolymerization is among one of the most exciting and relatively recent findings in Biochemistry. This review focuses on the initial steps leading to the seminal discoveries of proteoglycogen and glycogenin at the beginning of the 1980s, which paved the way for subsequent foundational breakthroughs that propelled forward this new research field. We also explore the current, as well as potential, impact this research field is having on human health and disease from the perspective of glycogen storage diseases. Important new questions arising from recent studies, their links to basic mechanisms involved in the de novo glycogen biogenesis, and the pervading presence of glycogenin across the evolutionary scale, fueled by high throughput -omics technologies, are also addressed.
Collapse
|
6
|
Maile CA, Hingst JR, Mahalingan KK, O'Reilly AO, Cleasby ME, Mickelson JR, McCue ME, Anderson SM, Hurley TD, Wojtaszewski JFP, Piercy RJ. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase. Biochim Biophys Acta Gen Subj 2017; 1861:3388-3398. [PMID: 27592162 PMCID: PMC5148651 DOI: 10.1016/j.bbagen.2016.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/15/2016] [Accepted: 08/30/2016] [Indexed: 01/16/2023]
Abstract
BACKGROUND Equine type 1 polysaccharide storage myopathy (PSSM1) is associated with a missense mutation (R309H) in the glycogen synthase (GYS1) gene, enhanced glycogen synthase (GS) activity and excessive glycogen and amylopectate inclusions in muscle. METHODS Equine muscle biochemical and recombinant enzyme kinetic assays in vitro and homology modelling in silico, were used to investigate the hypothesis that higher GS activity in affected horse muscle is caused by higher GS expression, dysregulation, or constitutive activation via a conformational change. RESULTS PSSM1-affected horse muscle had significantly higher glycogen content than control horse muscle despite no difference in GS expression. GS activity was significantly higher in muscle from homozygous mutants than from heterozygote and control horses, in the absence and presence of the allosteric regulator, glucose 6 phosphate (G6P). Muscle from homozygous mutant horses also had significantly increased GS phosphorylation at sites 2+2a and significantly higher AMPKα1 (an upstream kinase) expression than controls, likely reflecting a physiological attempt to reduce GS enzyme activity. Recombinant mutant GS was highly active with a considerably lower Km for UDP-glucose, in the presence and absence of G6P, when compared to wild type GS, and despite its phosphorylation. CONCLUSIONS Elevated activity of the mutant enzyme is associated with ineffective regulation via phosphorylation rendering it constitutively active. Modelling suggested that the mutation disrupts a salt bridge that normally stabilises the basal state, shifting the equilibrium to the enzyme's active state. GENERAL SIGNIFICANCE This study explains the gain of function pathogenesis in this highly prevalent polyglucosan myopathy.
Collapse
Affiliation(s)
- C A Maile
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, UK
| | - J R Hingst
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - K K Mahalingan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, USA
| | - A O O'Reilly
- School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, UK
| | - M E Cleasby
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - J R Mickelson
- Veterinary Biomedical Sciences Department, University of Minnesota, St. Paul, MN, USA
| | - M E McCue
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - S M Anderson
- Veterinary Population Medicine Department, University of Minnesota, St. Paul, MN, USA
| | - T D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, USA
| | - J F P Wojtaszewski
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - R J Piercy
- Comparative Neuromuscular Diseases Laboratory, Department of Clinical Sciences and Services, Royal Veterinary College, London, UK.
| |
Collapse
|
7
|
Contreras CJ, Segvich DM, Mahalingan K, Chikwana VM, Kirley TL, Hurley TD, DePaoli-Roach AA, Roach PJ. Incorporation of phosphate into glycogen by glycogen synthase. Arch Biochem Biophys 2016; 597:21-9. [PMID: 27036853 DOI: 10.1016/j.abb.2016.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 03/23/2016] [Indexed: 01/27/2023]
Abstract
The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation.
Collapse
Affiliation(s)
- Christopher J Contreras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Dyann M Segvich
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Krishna Mahalingan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Vimbai M Chikwana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; Dow AgroSciences LLC, 9630 Zionsville Road, Indianapolis, IN 46268, USA
| | - Terence L Kirley
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Thomas D Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Anna A DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA
| | - Peter J Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA.
| |
Collapse
|
8
|
Zeqiraj E, Sicheri F. Getting a handle on glycogen synthase - Its interaction with glycogenin. Mol Aspects Med 2015; 46:63-9. [PMID: 26278983 DOI: 10.1016/j.mam.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 02/08/2023]
Abstract
Glycogen is a polymer of glucose that serves as a major energy reserve in eukaryotes. It is synthesized through the cooperative action of glycogen synthase (GS), glycogenin (GN) and glycogen branching enzyme. GN initiates the first enzymatic step in the glycogen synthesis process by self glucosylation of a short 8-12 glucose residue primer. After interacting with GN, GS then extends this sugar primer to form glycogen particles of different sizes. We discuss recent developments in the structural biology characterization of GS and GN enzymes, which have contributed to a better understanding of how the two proteins interact and how they collaborate to synthesize glycogen particles.
Collapse
Affiliation(s)
- Elton Zeqiraj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1090, Toronto, ON M5G 1X5, Canada; Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 1090, Toronto, ON M5G 1X5, Canada; Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
9
|
Smith-Kinnaman WR, Berna MJ, Hunter GO, True JD, Hsu P, Cabello GI, Fox MJ, Varani G, Mosley AL. The interactome of the atypical phosphatase Rtr1 in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2015; 10:1730-41. [PMID: 24671508 DOI: 10.1039/c4mb00109e] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The phosphatase Rtr1 has been implicated in dephosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) during transcription elongation and in regulation of nuclear import of RNAPII. Although it has been shown that Rtr1 interacts with RNAPII in yeast and humans, the specific mechanisms that underlie Rtr1 recruitment to RNAPII have not been elucidated. To address this, we have performed an in-depth proteomic analysis of Rtr1 interacting proteins in yeast. Our studies revealed that hyperphosphorylated RNAPII is the primary interacting partner for Rtr1. To extend these findings, we performed quantitative proteomic analyses of Rtr1 interactions in yeast strains deleted for CTK1, the gene encoding the catalytic subunit of the CTD kinase I (CTDK-I) complex. Interestingly, we found that the interaction between Rtr1 and RNAPII is decreased in ctk1Δ strains. We hypothesize that serine-2 CTD phosphorylation is required for Rtr1 recruitment to RNAPII during transcription elongation.
Collapse
Affiliation(s)
- Whitney R Smith-Kinnaman
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hunter RW, Zeqiraj E, Morrice N, Sicheri F, Sakamoto K. Expression and purification of functional human glycogen synthase-1:glycogenin-1 complex in insect cells. Protein Expr Purif 2014; 108:23-29. [PMID: 25527037 PMCID: PMC4370744 DOI: 10.1016/j.pep.2014.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/07/2014] [Accepted: 12/10/2014] [Indexed: 12/31/2022]
Abstract
GYS1:GN1 complex expressed using bicistronic pFastBac-Dual vector in insect cells. A large quantity of highly-pure stoichiometric GYS1:GN1 complex obtained. Purified GYS1 is functional and heavily phosphorylated at several Ser/Thr residues. GYS1:GN1 complex will be useful to reveal its structural and biochemical properties.
We report the successful expression and purification of functional human muscle glycogen synthase (GYS1) in complex with human glycogenin-1 (GN1). Stoichiometric GYS1:GN1 complex was produced by co-expression of GYS1 and GN1 using a bicistronic pFastBac™-Dual expression vector, followed by affinity purification and subsequent size-exclusion chromatography. Mass spectrometry analysis identified that GYS1 is phosphorylated at several well-characterised and uncharacterised Ser/Thr residues. Biochemical analysis, including activity ratio (in the absence relative to that in the presence of glucose-6-phosphate) measurement, covalently attached phosphate estimation as well as phosphatase treatment, revealed that recombinant GYS1 is substantially more heavily phosphorylated than would be observed in intact human or rodent muscle tissues. A large quantity of highly-pure stoichiometric GYS1:GN1 complex will be useful to study its structural and biochemical properties in the future, which would reveal mechanistic insights into its functional role in glycogen biosynthesis.
Collapse
Affiliation(s)
- Roger W Hunter
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment G, 1015 Lausanne, Switzerland
| | - Elton Zeqiraj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Nicholas Morrice
- Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, UK
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada; Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kei Sakamoto
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, bâtiment G, 1015 Lausanne, Switzerland.
| |
Collapse
|