1
|
Panjideh H, Niesler N, Weng A, Fuchs H. Improved Therapy of B-Cell Non-Hodgkin Lymphoma by Obinutuzumab-Dianthin Conjugates in Combination with the Endosomal Escape Enhancer SO1861. Toxins (Basel) 2022; 14:toxins14070478. [PMID: 35878216 PMCID: PMC9318199 DOI: 10.3390/toxins14070478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 12/28/2022] Open
Abstract
Immunotoxins do not only bind to cancer-specific receptors to mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. The plant glycoside SO1861 was previously reported to enhance the endolysosomal escape of antibody-toxin conjugates in non-hematopoietic cells, thus increasing their cytotoxicity manifold. Here we tested this technology for the first time in a lymphoma in vivo model. First, the therapeutic CD20 antibody obinutuzumab was chemically conjugated to the ribosome-inactivating protein dianthin. The cytotoxicity of obinutuzumab-dianthin (ObiDi) was evaluated on human B-lymphocyte Burkitt’s lymphoma Raji cells and compared to human T-cell leukemia off-target Jurkat cells. When tested in combination with SO1861, the cytotoxicity for target cells was 131-fold greater than for off-target cells. In vivo imaging in a xenograft model of B-cell lymphoma in mice revealed that ObiDi/SO1861 efficiently prevents tumor growth (51.4% response rate) compared to the monotherapy with ObiDi (25.9%) and non-conjugated obinutuzumab (20.7%). The reduction of tumor volume and overall survival was also improved. Taken together, our results substantially contribute to the development of a combination therapy with SO1861 as a platform technology to enhance the efficacy of therapeutic antibody-toxin conjugates in lymphoma and leukemia.
Collapse
Affiliation(s)
- Hossein Panjideh
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Nicole Niesler
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany;
| | - Hendrik Fuchs
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Augustenburger Platz 1, D-13353 Berlin, Germany; (H.P.); (N.N.)
- Correspondence:
| |
Collapse
|
2
|
Magnetic Nanoparticle-Based Dianthin Targeting for Controlled Drug Release Using the Endosomal Escape Enhancer SO1861. NANOMATERIALS 2021; 11:nano11041057. [PMID: 33924180 PMCID: PMC8074366 DOI: 10.3390/nano11041057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 01/22/2023]
Abstract
Targeted tumor therapy can provide the basis for the inhibition of tumor growth. However, a number of toxin-based therapeutics lack efficacy because of insufficient endosomal escape after being internalized by endocytosis. To address this problem, the potential of glycosylated triterpenoids, such as SO1861, as endosomal escape enhancers (EEE) for superparamagnetic iron oxide nanoparticle (SPION)-based toxin therapy was investigated. Herein, two different SPION-based particle systems were synthesized, each selectively functionalized with either the targeted toxin, dianthin-epidermal growth factor (DiaEGF), or the EEE, SO1861. After applying both particle systems in vitro, an almost 2000-fold enhancement in tumor cell cytotoxicity compared to the monotherapy with SPION-DiaEGF and a 6.7-fold gain in specificity was observed. Thus, the required dose of the formulation was appreciably reduced, and the therapeutic window widened.
Collapse
|
3
|
Niesler N, Arndt J, Silberreis K, Fuchs H. Generation of a soluble and stable apoptin-EGF fusion protein, a targeted viral protein applicable for tumor therapy. Protein Expr Purif 2020; 175:105687. [PMID: 32681952 DOI: 10.1016/j.pep.2020.105687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 11/18/2022]
Abstract
A promising candidate for tumor targeted toxins is the chicken anemia-derived protein apoptin that induces tumor-specific apoptosis. It was aimed to design a novel apoptin-based targeted toxin by genetic fusion of apoptin with the tumor-directed ligand epidermal growth factor (EGF) using Escherichia coli as expression host. However, apoptin is highly hydrophobic and tends to form insoluble aggregates. Therefore, three different apoptin-EGF variants were generated. The fusion protein hexa-histidine (His)-apoptin-EGF (HAE) was expressed in E. coli and purified under denaturing conditions due to inclusion bodies. The protein solubility was improved by maltose-binding protein (MBP) or glutathione S-transferase. The protein MBP-apoptin-EGFHis (MAEH) was found favorable as a targeted toxin regarding final yield (4-6 mg/L) and stability. MBP was enzymatically removed using clotting factor Xa, which resulted in low yield and poor separation. MAEH was tested on target and non-target cell lines. The targeted tumor cell line A431 showed significant toxicity with an IC50 of 69.55 nM upon incubation with MAEH while fibroblasts and target receptor-free cells remained unaffected. Here we designed a novel EGF receptor targeting drug with high yield, purity and stability.
Collapse
Affiliation(s)
- Nicole Niesler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Janine Arndt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kim Silberreis
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Hendrik Fuchs
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
4
|
Dianthin and Its Potential in Targeted Tumor Therapies. Toxins (Basel) 2019; 11:toxins11100592. [PMID: 31614697 PMCID: PMC6832487 DOI: 10.3390/toxins11100592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Dianthin enzymes belong to ribosome-inactivating proteins (RIPs) of type 1, i.e., they only consist of a catalytic domain and do not have a cell binding moiety. Dianthin-30 is very similar to saporin-S3 and saporin-S6, two RIPs often used to design targeted toxins for tumor therapy and already tested in some clinical trials. Nevertheless, dianthin enzymes also exhibit differences to saporin with regard to structure, efficacy, toxicity, immunogenicity and production by heterologous expression. Some of the distinctions might make dianthin more suitable for targeted tumor therapies than other RIPs. The present review provides an overview of the history of dianthin discovery and illuminates its structure, function and role in targeted toxins. It further discusses the option to increase the efficacy of dianthin by endosomal escape enhancers.
Collapse
|
5
|
Kokorin A, Weise C, Sama S, Weng A. A new type 1 ribosome-inactivating protein from the seeds of Gypsophila elegans M.Bieb. PHYTOCHEMISTRY 2019; 157:121-127. [PMID: 30399494 DOI: 10.1016/j.phytochem.2018.10.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/16/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are enzymes with N-glycosylase activity that remove adenine bases from the ribosomal RNA. In theory, one single RIP molecule internalized into a cell is sufficient to induce cell death. For this reason, RIPs are of high potential as toxic payload for anti-tumor therapy. A considerable number of RIPs are synthesized by plants that belong to the carnation family (Caryophyllaceae). Prominent examples are the RIPs saporin from Saponaria officinalis L. or dianthin from Dianthus caryophyllus L. In this study, we have isolated and characterized a novel RIP (termed gypsophilin-S) from the tiny seeds of Gypsophila elegans M. Bieb. (Caryophyllaceae). It is noteworthy that this is the first study presenting the complete amino acid sequence of a RIP from a Gypsophila species. Gypsophilin-S was isolated from the defatted seed material following ammonium sulphate precipitation and HPLC-based ion exchange chromatography. Gypsophilin-S-containing fractions were analysed by SDS-PAGE and mass spectrometry. The full amino acid sequence of gypsophilin-S was assembled by MALDI-TOF-MS-MS and PCR. Gypsophilin-S exhibited strong adenine releasing activity and its cytotoxicity in human glioblastoma cells was investigated using an impedance-based real-time assay in comparison with recombinant saporin and dianthin.
Collapse
Affiliation(s)
- Arsenij Kokorin
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Simko Sama
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
6
|
Barkhordari F, Raigani M, Garoosi YT, Mahboudi F, Davami F. Optimization of EnBase Fed-Batch Cultivation to Improve Soluble Fraction Ratio of α-Luffin Ribosome Inactivating Protein. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1482. [PMID: 30555837 PMCID: PMC6217263 DOI: 10.21859/ijb.1482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/04/2017] [Accepted: 03/17/2018] [Indexed: 02/07/2023]
Abstract
Background The increase of the protein expression via ribosomal manipulation is one of the suggested cellular mechanisms involved in EnBase fed-batch mode of cultivation. However, this system has not been implemented for cytotoxic proteins. Objectives Here, the expression pattern of α-Luffin, a ribosome inactivation protein (RIP) with an innate toxicity, was investigated in EnBase system and the effect of low temperature cultivation on the increase of α-Luffin solubility was determined. Materials and Methods The encoding cDNA for mature α-Luffin was synthesized and subcloned into pET28a plasmid under the control of T7 promoter. The E. coli expression yield in EnBase® Flo fed-batch system was compared with traditional batch mode at two temperatures: 25 °C and 30 °C. Sampling was performed at several time intervals and solubility of recombinant-protein was checked on SDS-PAGE in pellet and supernatant samples. The purification of recombinant protein was performed by Ni-NTA column. Results In fed-batch cultivation mode, the early incubation time was desirable at 30 °C whereas the maximum amount of soluble α-Luffin was achieved from the extended protein synthesis period (12 and 24h post induction) at 25 °C. Conclusions Our founding showed that EnBase had a greater efficacy in producing higher soluble protein ratios compared to batch cultivation growth rate, however for cytotoxic proteins, incubation temperature and time need to be optimized. Owing to the advantages of natural toxins from RIP family for producing anticancer immune-conjugates, well optimization of this protein expression is of importance regarding industrial aspects. The optimized condition proposed here is promising in terms of large scale soluble production of α-Luffin without the need for refolding.
Collapse
Affiliation(s)
- Farzaneh Barkhordari
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Faculty of Sciences, Science and Technology Branch, Islamic Azad University, Tehran, Iran
| | - Mozhgan Raigani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
7
|
Weng A. A novel adenine-releasing assay for ribosome-inactivating proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1072:300-304. [PMID: 29202361 DOI: 10.1016/j.jchromb.2017.11.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/07/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic enzymes that are mostly biosynthesized by plants. RIPs are N-glycosidases that cleave an essential adenine molecule from the 28S rRNA. This is followed by the irreversible inhibition of protein synthesis leading to cell death. By fusing RIPs to cancer cell specific targeting ligands RIPs have been utilized for targeted anti-tumor therapy. The anti-tumoral efficiency of such conjugates depends significantly on the N-glycosidase activity of the RIP domain. Different methods have been developed in order to determine the N-glycosidase activity of RIPs and RIP domain containing anti-tumor toxins. However the existing methods are elaborate and include radioassays, HPLC and enzymatic conversion assays. Here, a simple and cost effective N-glycosidase assay is presented, which is based on the direct determination of the released adenine by thin-layer chromatography (TLC) and TLC-densitometry. An adenine based single stranded oligonucleotide is used as substrate. Following TLC development the released adenine is quantified on silica glass plates by UV absorbance at 260nm.
Collapse
Affiliation(s)
- Alexander Weng
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str 2+4, 14195 Berlin, Germany.
| |
Collapse
|
8
|
Bhargava C, Dürkop H, Zhao X, Weng A, Melzig MF, Fuchs H. Targeted dianthin is a powerful toxin to treat pancreatic carcinoma when applied in combination with the glycosylated triterpene SO1861. Mol Oncol 2017; 11:1527-1543. [PMID: 28755527 PMCID: PMC5664001 DOI: 10.1002/1878-0261.12115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 06/30/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Targeted cancer therapy provides the basis for the arrest of tumor growth in aggressive pancreatic carcinoma; however, a number of protein-based targeted toxins lack efficacy due to insufficient endosomal escape after being endocytosed. Therefore, we tested a fusion protein of the ribosome-inactivating protein dianthin and human epidermal growth factor in combination with a glycosylated triterpene (SO1861) that serves as an endosomal escape enhancer. In vitro investigations with the pancreatic carcinoma cell lines BxPC-3 and MIA PaCa-2 revealed no significant differences to off-target cells in the half maximal inhibitory concentration (IC50 ) for the fusion protein. In contrast, combination with SO1861 decreased the IC50 for BxPC-3 cells from 100 to 0.17 nm, whereas control cells remained unaffected. Monotherapy of BxPC-3 xenografts in CD-1 nude mice led to a 51.7% average reduction in tumor size (40.8 mm3 ) when compared to placebo; however, combined treatment with SO1861 resulted in a more than 13-fold better efficacy (3.0 mm3 average tumor size) with complete regression in 80% of cases. Immunohistochemical analyses showed that tumor cells with lower target receptor expression are, in contrast to the combination therapy, able to escape from the monotherapy, which finally results in tumor growth. At the effective concentration, we did not observe liver toxicity and saw no other side effects with the exception of a reversible skin hardening at the SO1861 injection site, alongside an increase in platelet counts, plateletcrit, and platelet distribution width. In conclusion, combining a targeted toxin with SO1861 is proven to be a very promising approach for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Cheenu Bhargava
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| | | | - Xiangli Zhao
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| | - Alexander Weng
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
- Institute for PharmacyFreie Universität BerlinGermany
| | | | - Hendrik Fuchs
- Institute for Laboratory MedicineClinical Chemistry and PathobiochemistryCharité – Universitätsmedizin BerlinGermany
| |
Collapse
|
9
|
Gilabert-Oriol R, Weng A, Trautner A, Weise C, Schmid D, Bhargava C, Niesler N, Wookey PJ, Fuchs H, Thakur M. Combinatorial approach to increase efficacy of Cetuximab, Panitumumab and Trastuzumab by dianthin conjugation and co-application of SO1861. Biochem Pharmacol 2015; 97:247-55. [PMID: 26253687 DOI: 10.1016/j.bcp.2015.07.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 07/31/2015] [Indexed: 12/20/2022]
Abstract
The therapeutic relevance of immunotoxins is based on the conjugation of monoclonal antibodies to toxins. In cancer therapies, the conjugated antibodies not only direct the binding of immunotoxins to cancer-specific receptors and mediate the elimination of tumor cells through the innate immune system, but also increase target cytotoxicity by the intrinsic toxin activity. In the present study, the therapeutic antibodies Cetuximab (anti-EGFR, Erbitux(®)), Panitumumab (anti-EGFR, Vectibix(®)) and Trastuzumab (anti-HER2, Herceptin(®)) were chemically conjugated to the toxin dianthin. In the first instance, recombinant dianthin was characterized by mass spectrometry and its stability was analyzed by circular dichroism. Dianthin showed increased cytotoxicity on MCF-7 cells when tested in combination with a glycosylated triterpenoid (SO1861) in a real-time impedance-based cytotoxicity assay. In data obtained by live cell imaging, SO1861 specifically mediated the endo/lysosomal escape of dianthin without disrupting the plasma membrane. The purity of immunotoxins was confirmed by SDS-PAGE and Western blot. Their cytotoxicity was evaluated in the presence of SO1861 and dianthin-Cetuximab presented a GI50 (50% growth inhibition) of 5.3pM, dianthin-Panitumumab of 1.5pM, and dianthin-Trastuzumab of 23pM. Finally, the specificity of these immunotoxins was validated in a fluorescence-based real-time assay, where their binding to target cells was prevented by preincubation with an excess of label-free unconjugated antibody. Based on these data, we propose the use of dianthin and SO1861 as a new platform technology to enhance the efficacy of therapeutic antibodies.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany; Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Alexander Weng
- Institut für Pharmazie-Pharmazeutische Biologie, Freie Universität Berlin, Königin-Luise-Straße 2+4, D-14195 Berlin, Germany
| | - Alexandra Trautner
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Christoph Weise
- Institut für Chemie und Biochemie, Freie Universität Berlin, Thielallee 63, D-14195 Berlin, Germany
| | - Daniel Schmid
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Cheenu Bhargava
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Nicole Niesler
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Peter J Wookey
- Department of Medicine, University of Melbourne, Austin Health, Studley Road, VIC 3084 Heidelberg, Australia
| | - Hendrik Fuchs
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany
| | - Mayank Thakur
- Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
10
|
Mallinckrodt BV, Thakur M, Weng A, Gilabert-Oriol R, Dürkop H, Brenner W, Lukas M, Beindorff N, Melzig MF, Fuchs H. Dianthin-EGF is an effective tumor targeted toxin in combination with saponins in a xenograft model for colon carcinoma. Future Oncol 2014; 10:2161-75. [DOI: 10.2217/fon.14.164] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
ABSTRACT Aims: The intention of this work was to lift saponin supported tumor targeted therapies onto the next level by using targeted toxins in nude mice xenotransplant models. Materials & methods: Combined application of dianthin coupled to EGF and saponin SO-1861 was tested in a xenograft model of colon carcinoma. In vitro cytotoxicity was tested in real-time in NIH3T3 cells (no human EGF receptor expression), HER14 and human colon carcinoma HCT116 (both EGF receptor overexpressing) cells. A xenograft model was established using HCT116 cells and tumor-bearing animals were treated with SO-1861 (30 µg/treatment) and dianthin coupled to EGF (0.35 µg/treatment). Tumor progression was monitored, using 18F-2-fluor-2-desoxy-d-glucose, by small animal PET and by x-ray computed tomography. Results: In vitro results demonstrated a high-receptor specificity and the in vivo experiment showed a progressive reduction of the tumor volume and glycolytic activity in the treated group (>95% reduction; p < 0.05). Conclusion: This therapy has great advantage because of high specificity, low side effects and great effectiveness for future development in the treatment of colon cancer.
Collapse
Affiliation(s)
- Benedicta von Mallinckrodt
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Mayank Thakur
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Weng
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Roger Gilabert-Oriol
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Horst Dürkop
- Pathodiagnostik Berlin, Referenzzentrum für Lymphom-und Hämatopathologie, Komturstraße 58, Berlin, Germany
| | - Winfried Brenner
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
| | - Mathias Lukas
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
- Department of Nuclear Medicine, Technical University Munich, Klinikum rechts der Isar, Ismaninger Straße 22, 81675 Munich, Germany
| | - Nicola Beindorff
- Department of Nuclear Medicine Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin
| | - Matthias F Melzig
- Institute of Pharmacy, Free University Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - Hendrik Fuchs
- Institute for Laboratory Medicine, Clinical Chemistry & Pathobiochemistry, Charité – Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
11
|
Gilabert-Oriol R, Thakur M, von Mallinckrodt B, Bhargava C, Wiesner B, Eichhorst J, Melzig MF, Fuchs H, Weng A. Reporter assay for endo/lysosomal escape of toxin-based therapeutics. Toxins (Basel) 2014; 6:1644-66. [PMID: 24859158 PMCID: PMC4052257 DOI: 10.3390/toxins6051644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/16/2022] Open
Abstract
Protein-based therapeutics with cytosolic targets are capable of exhibiting their therapeutic effect once they have escaped from the endosomes or lysosomes. In this study, the reporters—horseradish peroxidase (HRP), Alexa Fluor 488 (Alexa) and ricin A-chain (RTA)—were investigated for their capacity to monitor the endo/lysosomal escape of the ribosome-inactivating protein, saporin. The conjugates—saporin-HRP, Alexasaporin and saporin-KQ-RTA—were constructed, and the endo/lysosomal escape of these conjugates alone (lack of endo/lysosomal release) or in combination with certain structurally-specific triterpenoidal saponins (efficient endo/lysosomal escape) was characterized. HRP failed in reporting the endo/lysosomal escape of saporin. Contrastingly, Alexa Fluor 488 successfully allowed the report of the process at a toxin concentration of 1000 nM. In addition, single endo/lysosome analysis facilitated the determination of the amount of Alexasaporin released from each vesicle. RTA was also successful in reporting the endo/lysosomal escape of the enzymatically inactive mutant, saporin-KQ, but in this case, the sensitivity of the method reached a toxin concentration of 10 nM. In conclusion, the simultaneous usage of Alexa Fluor 488 and RTA as reporters may provide the possibility of monitoring the endo/lysosomal escape of protein-based therapeutics in the concentration range of 10–1000 nM.
Collapse
Affiliation(s)
- Roger Gilabert-Oriol
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Mayank Thakur
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Benedicta von Mallinckrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Cheenu Bhargava
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Burkhard Wiesner
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin D-13125, Germany.
| | - Jenny Eichhorst
- Leibnizinstitut für Molekulare Pharmakologie (FMP), Berlin D-13125, Germany.
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2 + 4, Berlin D-14195, Germany.
| | - Hendrik Fuchs
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| | - Alexander Weng
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin D-13353, Germany.
| |
Collapse
|