1
|
Lefin N, Miranda J, Beltrán JF, Belén LH, Effer B, Pessoa A, Farias JG, Zamorano M. Current state of molecular and metabolic strategies for the improvement of L-asparaginase expression in heterologous systems. Front Pharmacol 2023; 14:1208277. [PMID: 37426818 PMCID: PMC10323146 DOI: 10.3389/fphar.2023.1208277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Heterologous expression of L-asparaginase (L-ASNase) has become an important area of research due to its clinical and food industry applications. This review provides a comprehensive overview of the molecular and metabolic strategies that can be used to optimize the expression of L-ASNase in heterologous systems. This article describes various approaches that have been employed to increase enzyme production, including the use of molecular tools, strain engineering, and in silico optimization. The review article highlights the critical role that rational design plays in achieving successful heterologous expression and underscores the challenges of large-scale production of L-ASNase, such as inadequate protein folding and the metabolic burden on host cells. Improved gene expression is shown to be achievable through the optimization of codon usage, synthetic promoters, transcription and translation regulation, and host strain improvement, among others. Additionally, this review provides a deep understanding of the enzymatic properties of L-ASNase and how this knowledge has been employed to enhance its properties and production. Finally, future trends in L-ASNase production, including the integration of CRISPR and machine learning tools are discussed. This work serves as a valuable resource for researchers looking to design effective heterologous expression systems for L-ASNase production as well as for enzymes production in general.
Collapse
Affiliation(s)
- Nicolás Lefin
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Javiera Miranda
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Jorge F. Beltrán
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Lisandra Herrera Belén
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Santiago, Chile
| | - Brian Effer
- Center of Excellence in Translational Medicine and Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco, Chile
| | - Adalberto Pessoa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge G. Farias
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| | - Mauricio Zamorano
- Department of Chemical Engineering, Science and Engineering Faculty, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
2
|
Gladilina YA, Shishparenok AN, Zhdanov DD. [Approaches for improving L-asparaginase expression in heterologous systems]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:19-38. [PMID: 36857424 DOI: 10.18097/pbmc20236901019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
L-asparaginase (EC 3.5.1.1) is one of the most demanded enzymes used in the pharmaceutical industry as a drug and in the food industry to prevent the formation of toxic acrylamide. Researchers aimed to improve specific activity and reduce side effects to create safer and more potent enzyme products. However, protein modifications and heterologous expression remain problematic in the production of asparaginases from different species. Heterologous expression in optimized producer strains is rationally organized; therefore, modified and heterologous protein expression is enhanced, which is the main strategy in the production of asparaginase. This strategy solves several problems: incorrect protein folding, metabolic load on the producer strain and codon misreading, which affects translation and final protein domains, leading to a decrease in catalytic activity. The main approaches developed to improve the heterologous expression of L-asparaginases are considered in this paper.
Collapse
Affiliation(s)
| | | | - D D Zhdanov
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
3
|
Karamitros CS, Konrad M. Fluorescence-Activated Cell Sorting of Human l-asparaginase Mutant Libraries for Detecting Enzyme Variants with Enhanced Activity. ACS Chem Biol 2016; 11:2596-607. [PMID: 27442338 DOI: 10.1021/acschembio.6b00283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunogenicity is one of the most common complications occurring during therapy making use of protein drugs of nonhuman origin. A notable example of such a case is bacterial l-asparaginases (L-ASNases) used for the treatment of acute lymphoblastic leukemia (ALL). The replacement of the bacterial enzymes by human ones is thought to set the basis for a major improvement of antileukemic therapy. Recently, we solved the crystal structure of a human enzyme possessing L-ASNase activity, designated hASNase-3. This enzyme is expressed as an inactive precursor protein and post-translationally undergoes intramolecular processing leading to the generation of two subunits which remain noncovalently, yet tightly associated and constitute the catalytically active form of the enzyme. We discovered that this intramolecular processing can be drastically and selectively accelerated by the free amino acid glycine. In the present study, we report on the molecular engineering of hASNase-3 aiming at the improvement of its catalytic properties. We created a fluorescence-activated cell sorting (FACS)-based high-throughput screening system for the characterization of rationally designed mutant libraries, capitalizing on the finding that free glycine promotes autoproteolytic cleavage, which activates the mutant proteins expressed in an E. coli strain devoid of aspartate biosynthesis. Successive screening rounds led to the isolation of catalytically improved variants showing up to 6-fold better catalytic efficiency as compared to the wild-type enzyme. Our work establishes a powerful strategy for further exploitation of the human asparaginase sequence space to facilitate the identification of in vitro-evolved enzyme species that will lay the basis for improved ALL therapy.
Collapse
Affiliation(s)
- Christos S. Karamitros
- Enzyme Biochemistry Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, D-37077, Germany
| | - Manfred Konrad
- Enzyme Biochemistry Group, Max-Planck Institute for Biophysical Chemistry, Göttingen, D-37077, Germany
| |
Collapse
|
4
|
Tekewe A, Connors NK, Middelberg APJ, Lua LHL. Design strategies to address the effect of hydrophobic epitope on stability and in vitro assembly of modular virus-like particle. Protein Sci 2016; 25:1507-16. [PMID: 27222486 DOI: 10.1002/pro.2953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/20/2016] [Indexed: 11/09/2022]
Abstract
Virus-like particles (VLPs) and capsomere subunits have shown promising potential as safe and effective vaccine candidates. They can serve as platforms for the display of foreign epitopes on their surfaces in a modular architecture. Depending on the physicochemical properties of the antigenic modules, modularization may affect the expression, solubility and stability of capsomeres, and VLP assembly. In this study, three module designs of a rotavirus hydrophobic peptide (RV10) were synthesized using synthetic biology. Among the three synthetic modules, modularization of the murine polyomavirus VP1 with a single copy of RV10 flanked by long linkers and charged residues resulted in the expression of stable modular capsomeres. Further employing the approach of module titration of RV10 modules on each capsomere via Escherichia coli co-expression of unmodified VP1 and modular VP1-RV10 successfully translated purified modular capomeres into modular VLPs when assembled in vitro. Our results demonstrate that tailoring the physicochemical properties of modules to enhance modular capsomeres stability is achievable through synthetic biology designs. Combined with module titration strategy to avoid steric hindrance to intercapsomere interactions, this allows bioprocessing of bacterially produced in vitro assembled modular VLPs.
Collapse
Affiliation(s)
- Alemu Tekewe
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Natalie K Connors
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Anton P J Middelberg
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Centre for Biomolecular Engineering, St Lucia, Queensland 4072, Australia
| | - Linda H L Lua
- The University of Queensland, UQ Protein Expression Facility, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
5
|
Li W, Irani S, Crutchfield A, Hodge K, Matthews W, Patel P, Zhang YJ, Stone E. Intramolecular Cleavage of the hASRGL1 Homodimer Occurs in Two Stages. Biochemistry 2016; 55:960-9. [PMID: 26780688 DOI: 10.1021/acs.biochem.5b01157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human asparaginase-like protein 1 (hASRGL1) is a member of the N-terminal nucleophile (Ntn) family that hydrolyzes l-asparagine and isoaspartyl-dipeptides. The nascent protein folds into an αβ-βα sandwich fold homodimer that cleaves its own peptide backbone at the G167-T168 bond, resulting in the active form of the enzyme. However, biophysical studies of hASRGL1 are difficult because of the curious fact that intramolecular cleavage of the G167-T168 peptide bond reaches only ≤50% completion. We capitalized upon our previous observation that intramolecular processing increases thermostability and developed a differential scanning fluorimetry assay that allowed direct detection of distinct processing intermediates for the first time. A kinetic analysis of these intermediates revealed that cleavage of one subunit of the hASRGL1 subunit drastically reduces the processing rate of the adjacent monomer, and a mutagenesis study showed that stabilization of the dimer interface plays a critical role in this process. We also report a comprehensive analysis of conserved active site residues and delineate their relative roles in autoprocessing and substrate hydrolysis. In addition to glycine, which was previously reported to selectively accelerate hASRGL1 cleavage, we identified several novel small molecule activators that also promote intramolecular processing. The structure-activity analysis supports the hypothesis that multiple negatively charged small molecules interact within the active site of hASRGL1 to act as a base in promoting cleavage. Overall, our investigation provides a mechanistic understanding of the maturation process of this Ntn hydrolase family member.
Collapse
Affiliation(s)
- Wenzong Li
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Seema Irani
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Amanda Crutchfield
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Kristal Hodge
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Wendy Matthews
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Pooja Patel
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| | - Everett Stone
- Department of Molecular Biosciences, ‡Department of Chemical Engineering, and §Institute of Cellular and Molecular Biology, University of Texas , Austin, Texas 78712, United States
| |
Collapse
|
6
|
Bejger M, Imiolczyk B, Clavel D, Gilski M, Pajak A, Marsolais F, Jaskolski M. Na⁺/K⁺ exchange switches the catalytic apparatus of potassium-dependent plant L-asparaginase. ACTA ACUST UNITED AC 2014; 70:1854-72. [PMID: 25004963 DOI: 10.1107/s1399004714008700] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 04/16/2014] [Indexed: 01/03/2023]
Abstract
Plant-type L-asparaginases, which are a subclass of the Ntn-hydrolase family, are divided into potassium-dependent and potassium-independent enzymes with different substrate preferences. While the potassium-independent enzymes have already been well characterized, there are no structural data for any of the members of the potassium-dependent group to illuminate the intriguing dependence of their catalytic mechanism on alkali-metal cations. Here, three crystal structures of a potassium-dependent plant-type L-asparaginase from Phaseolus vulgaris (PvAspG1) differing in the type of associated alkali metal ions (K(+), Na(+) or both) are presented and the structural consequences of the different ions are correlated with the enzyme activity. As in all plant-type L-asparaginases, immature PvAspG1 is a homodimer of two protein chains, which both undergo autocatalytic cleavage to α and β subunits, thus creating the mature heterotetramer or dimer of heterodimers (αβ)2. The αβ subunits of PvAspG1 are folded similarly to the potassium-independent enzymes, with a sandwich of two β-sheets flanked on each side by a layer of helices. In addition to the `sodium loop' (here referred to as the `stabilization loop') known from potassium-independent plant-type asparaginases, the potassium-dependent PvAspG1 enzyme contains another alkali metal-binding loop (the `activation loop') in subunit α (residues Val111-Ser118). The active site of PvAspG1 is located between these two metal-binding loops and in the immediate neighbourhood of three residues, His117, Arg224 and Glu250, acting as a catalytic switch, which is a novel feature that is identified in plant-type L-asparaginases for the first time. A comparison of the three PvAspG1 structures demonstrates how the metal ion bound in the activation loop influences its conformation, setting the catalytic switch to ON (when K(+) is coordinated) or OFF (when Na(+) is coordinated) to respectively allow or prevent anchoring of the reaction substrate/product in the active site. Moreover, it is proposed that Ser118, the last residue of the activation loop, is involved in the potassium-dependence mechanism. The PvAspG1 structures are discussed in comparison with those of potassium-independent L-asparaginases (LlA, EcAIII and hASNase3) and those of other Ntn-hydrolases (AGA and Tas1), as well as in the light of noncrystallographic studies.
Collapse
Affiliation(s)
- Magdalena Bejger
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Imiolczyk
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Damien Clavel
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
7
|
Karamitros CS, Konrad M. Human 60-kDa lysophospholipase contains an N-terminal L-asparaginase domain that is allosterically regulated by L-asparagine. J Biol Chem 2014; 289:12962-75. [PMID: 24657844 PMCID: PMC4036312 DOI: 10.1074/jbc.m113.545038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/02/2014] [Indexed: 11/06/2022] Open
Abstract
The structural and functional characterization of human enzymes that are of potential medical and therapeutic interest is of prime significance for translational research. One of the most notable examples of a therapeutic enzyme is L-asparaginase, which has been established as an antileukemic protein drug for more than four decades. Up until now, only bacterial enzymes have been used in therapy despite a plethora of undesired side effects mainly attributed to the bacterial origins of these enzymes. Therefore, the replacement of the currently approved bacterial drugs by human homologs aiming at the elimination of adverse effects is of great importance. Recently, we structurally and biochemically characterized the enzyme human L-asparaginase 3 (hASNase3), which possesses L-asparaginase activity and belongs to the N-terminal nucleophile superfamily of enzymes. Inspired by the necessity for the development of a protein drug of human origin, in the present study, we focused on the characterization of another human L-asparaginase, termed hASNase1. This bacterial-type cytoplasmic L-asparaginase resides in the N-terminal subdomain of an overall 573-residue protein previously reported to function as a lysophospholipase. Our kinetic, mutagenesis, structural modeling, and fluorescence labeling data highlight allosteric features of hASNase1 that are similar to those of its Escherichia coli homolog, EcASNase1. Differential scanning fluorometry and urea denaturation experiments demonstrate the impact of particular mutations on the structural and functional integrity of the L-asparaginase domain and provide a direct comparison of sites critical for the conformational stability of the human and E. coli enzymes.
Collapse
Affiliation(s)
- Christos S. Karamitros
- From the Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Göttingen D-37077, Germany
| | - Manfred Konrad
- From the Enzyme Biochemistry Group, Max Planck Institute for Biophysical Chemistry, Göttingen D-37077, Germany
| |
Collapse
|