1
|
Mohamad Alias NN, Beng Ong EB, Liew MWO. Removal and monitoring of residual nucleic acids from core streptavidin inclusion bodies for increased refolding yield. Protein Expr Purif 2025; 225:106591. [PMID: 39181482 DOI: 10.1016/j.pep.2024.106591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Commercial production of recombinant streptavidin (SAV) using soluble expression route is cost-prohibitive, resulting from its inherent toxicity toward commercially available Escherichia coli hosts (such as BL21) and low productivity of existing manufacturing processes. Quality challenges can also result from binding of streptavidin in the host cells. One way to overcome these challenges is to allow formation of inclusion bodies (IBs). Nevertheless, carried-over cellular contaminants during IBs preparation can hinder protein refolding and application of SAV in nucleic acid-based applications. Hence, removing associated contaminants in recombinant IBs is imperative for maximum product outcomes. In this study, the IBs isolation method from our group was improved to remove residual DNA found in refolded core SAV (cSAV). The improvements were attained by incorporating quantitative real-time polymerase chain reactions (qPCR) for residual DNA monitoring. We attained 99 % cellular DNA removal from cSAV IBs via additional wash and sonication steps, and the addition of benzonase nuclease during lysis. A 10 % increment of cSAV refolding yield (72 %) and 83 % reduction of residual DNA from refolding of 1 mg cSAV IBs were observed under extensive sonication. Refolding of cSAV was not affected and its activity was not compromised. The optimized process reported here highlights the importance of obtaining cSAV IBs with minimal contaminants prior to refolding to increase product yield, and the usefulness of the qPCR method to monitor nucleic acid removed from each step of the process.
Collapse
Affiliation(s)
- Nurul Nadia Mohamad Alias
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| | - Mervyn W O Liew
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.
| |
Collapse
|
2
|
Bactenecin and Its Three Improved Derivatives for Enhancement of Antibacterial Activity Against Escherichia coli. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.94769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Jeschek M, Panke S, Ward TR. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism. Trends Biotechnol 2017; 36:60-72. [PMID: 29061328 DOI: 10.1016/j.tibtech.2017.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 01/13/2023]
Abstract
Residing at the interface of chemistry and biotechnology, artificial metalloenzymes (ArMs) offer an attractive technology to combine the versatile reaction repertoire of transition metal catalysts with the exquisite catalytic features of enzymes. While earlier efforts in this field predominantly comprised studies in well-defined test-tube environments, a trend towards exploiting ArMs in more complex environments has recently emerged. Integration of these artificial biocatalysts in enzymatic cascades and using them in whole-cell biotransformations and in vivo opens up entirely novel prospects for both preparative chemistry and synthetic biology. We highlight selected recent developments with a particular focus on challenges and opportunities in the in vivo application of ArMs.
Collapse
Affiliation(s)
- Markus Jeschek
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland.
| | - Sven Panke
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Abatemarco J, Sarhan MF, Wagner JM, Lin JL, Liu L, Hassouneh W, Yuan SF, Alper HS, Abate AR. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes. Nat Commun 2017; 8:332. [PMID: 28835641 PMCID: PMC5569033 DOI: 10.1038/s41467-017-00425-7] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 11/21/2022] Open
Abstract
Synthetic biology and metabolic engineering seek to re-engineer microbes into "living foundries" for the production of high value chemicals. Through a "design-build-test" cycle paradigm, massive libraries of genetically engineered microbes can be constructed and tested for metabolite overproduction and secretion. However, library generation capacity outpaces the rate of high-throughput testing and screening. Well plate assays are flexible but with limited throughput, whereas droplet microfluidic techniques are ultrahigh-throughput but require a custom assay for each target. Here we present RNA-aptamers-in-droplets (RAPID), a method that greatly expands the generality of ultrahigh-throughput microfluidic screening. Using aptamers, we transduce extracellular product titer into fluorescence, allowing ultrahigh-throughput screening of millions of variants. We demonstrate the RAPID approach by enhancing production of tyrosine and secretion of a recombinant protein in Saccharomyces cerevisiae by up to 28- and 3-fold, respectively. Aptamers-in-droplets affords a general approach for evolving microbes to synthesize and secrete value-added chemicals.Screening libraries of genetically engineered microbes for secreted products is limited by the available assay throughput. Here the authors combine aptamer-based fluorescent detection with droplet microfluidics to achieve high throughput screening of yeast strains engineered for enhanced tyrosine or streptavidin production.
Collapse
Affiliation(s)
- Joseph Abatemarco
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA
| | - Maen F Sarhan
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA
| | - James M Wagner
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA
| | - Jyun-Liang Lin
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA
| | - Leqian Liu
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA
| | - Wafa Hassouneh
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA
- Chan Zuckerberg Biohub, San Francisco, 94158, California, USA
| | - Shuo-Fu Yuan
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas, 78712, USA
| | - Hal S Alper
- Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St Stop C0400, Austin, Texas, 78712, USA.
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas, 78712, USA.
| | - Adam R Abate
- Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, 94158, California, USA.
- California Institute for Quantitative Biosciences, University of California San Francisco, San Francisco, 94158, California, USA.
- Chan Zuckerberg Biohub, San Francisco, 94158, California, USA.
| |
Collapse
|
5
|
Müller JM, Bruhn S, Flaschel E, Friehs K, Risse JM. GAP promoter-based fed-batch production of highly bioactive core streptavidin byPichia pastoris. Biotechnol Prog 2016; 32:855-64. [DOI: 10.1002/btpr.2283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/02/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Jakob Michael Müller
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Simon Bruhn
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Erwin Flaschel
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Karl Friehs
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| | - Joe Max Risse
- Lehrstuhl Für Fermentationstechnik, Technische Fakultät, Universität Bielefeld; PF 10 01 31 Bielefeld D-33501 Germany
| |
Collapse
|
6
|
Wetzel D, Müller JM, Flaschel E, Friehs K, Risse JM. Fed-batch production and secretion of streptavidin by Hansenula polymorpha: Evaluation of genetic factors and bioprocess development. J Biotechnol 2016; 225:3-9. [DOI: 10.1016/j.jbiotec.2016.03.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/16/2022]
|
7
|
Wills M. Imino Transfer Hydrogenation Reductions. Top Curr Chem (Cham) 2016; 374:14. [DOI: 10.1007/s41061-016-0013-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
|
8
|
Constitutive production and efficient secretion of soluble full-length streptavidin by an Escherichia coli ‘leaky mutant’. J Biotechnol 2016; 221:91-100. [DOI: 10.1016/j.jbiotec.2016.01.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 11/22/2022]
|
9
|
Engineering of Harobin for enhanced fibrinolytic activity obtained by random and site-directed mutagenesis. Protein Expr Purif 2015; 129:162-172. [PMID: 26363113 DOI: 10.1016/j.pep.2015.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/06/2015] [Accepted: 09/08/2015] [Indexed: 11/21/2022]
Abstract
We have previously published a report on the cloning and characterization of Harobin, a fibrinolytic serine protease. However, the broad application of this fibrinolytic enzyme is limited by its low expression level that was achieved in Pichia pastoris. To counteract this shortcoming, random and site-directed mutagenesis have been combined in order to improve functional expression and activity of Harobin. By screening 400 clones from random mutant libraries for enhanced fibrinolytic activity, two mutants were obtained: N111R, R230G. By performing site-directed mutagenesis, a Harobin double mutant, N111R/R230G, was constructed and can be functionally expressed at higher level than the wild type enzyme. In addition, it possessed much higher fibrinolytic and amidolytic activity than the wild type enzyme and other single mutants. The N111R/R230G expressed in basal salts medium was purified by a three step purification procedure. At pH of 6.0-9.0, and the temperature range of 40-90 °C, N111R/R230G was more active and more heat resistant. The fibrinolytic activities of Harobin mutants were completely inhibited by PMSF and SBTI, but not by EDTA, EGTA, DTT, indicating that Harobin is a serine protease. N111R/R230G showed much better anti-thrombosis effect than wild type Harobin and single mutants, and could significantly increase bleeding and clotting time. Intravenous injection of N111R/R230G in spontaneous hypertensive rats (SHR) led to a significant reduction in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) (p < 0.01), while heart rate (HR) was not affected. The in vitro and in vivo results of the present study revealed that Harobin double mutant N111R/R230G is an appropriate candidate for biotechnological applications due to its high expression level and high activity in area of thrombosis and hypertension.
Collapse
|
10
|
Müller JM, Risse JM, Friehs K, Flaschel E. Model-based development of an assay for the rapid detection of biotin-blocked binding sites of streptavidin. Eng Life Sci 2015. [DOI: 10.1002/elsc.201400227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jakob M. Müller
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Joe M. Risse
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Karl Friehs
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| | - Erwin Flaschel
- Chair of Fermentation Engineering; Faculty of Technology; Bielefeld University; Bielefeld Germany
| |
Collapse
|
11
|
Noda S, Matsumoto T, Tanaka T, Kondo A. Secretory production of tetrameric native full-length streptavidin with thermostability using Streptomyces lividans as a host. Microb Cell Fact 2015; 14:5. [PMID: 25582841 PMCID: PMC4328045 DOI: 10.1186/s12934-014-0188-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 12/26/2014] [Indexed: 12/04/2022] Open
Abstract
Background Streptavidin is a tetrameric protein derived from Streptomyces avidinii, and has tight and specific biotin binding affinity. Applications of the streptavidin-biotin system have been widely studied. Streptavidin is generally produced using protein expression in Escherichia coli. In the present study, the secretory production of streptavidin was carried out using Streptomyces lividans as a host. Results In this study, we used the gene encoding native full-length streptavidin, whereas the core region is generally used for streptavidin production in E. coli. Tetrameric streptavidin composed of native full-length streptavidin monomers was successfully secreted in the culture supernatant of S. lividans transformants, and had specific biotin binding affinity as strong as streptavidin produced by E. coli. The amount of Sav using S. lividans was about 9 times higher than using E. coli. Surprisingly, streptavidin produced by S. lividans exhibited affinity to biotin after boiling, despite the fact that tetrameric streptavidin is known to lose its biotin binding ability after brief boiling. Conclusion We successfully produced a large amount of tetrameric streptavidin as a secretory-form protein with unique thermotolerance. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0188-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuhei Noda
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Takuya Matsumoto
- Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Akihiko Kondo
- Biomass Engineering Program, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
12
|
|