1
|
Breeding Canola ( Brassica napus L.) for Protein in Feed and Food. PLANTS 2021; 10:plants10102220. [PMID: 34686029 PMCID: PMC8539702 DOI: 10.3390/plants10102220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023]
Abstract
Interest in canola (Brassica napus L.). In response to this interest, scientists have been tasked with altering and optimizing the protein production chain to ensure canola proteins are safe for consumption and economical to produce. Specifically, the role of plant breeders in developing suitable varieties with the necessary protein profiles is crucial to this interdisciplinary endeavour. In this article, we aim to provide an overarching review of the canola protein chain from the perspective of a plant breeder, spanning from the genetic regulation of seed storage proteins in the crop to advancements of novel breeding technologies and their application in improving protein quality in canola. A review on the current uses of canola meal in animal husbandry is presented to underscore potential limitations for the consumption of canola meal in mammals. General discussions on the allergenic potential of canola proteins and the regulation of novel food products are provided to highlight some of the challenges that will be encountered on the road to commercialization and general acceptance of canola protein as a dietary protein source.
Collapse
|
2
|
Lyzenga WJ, Harrington M, Bekkaoui D, Wigness M, Hegedus DD, Rozwadowski KL. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. BMC PLANT BIOLOGY 2019; 19:292. [PMID: 31272394 PMCID: PMC6611024 DOI: 10.1186/s12870-019-1873-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/05/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The oilseed Camelina sativa is grown for a range of applications, including for biofuel, biolubricants, and as a source of omega-3 fatty acids for the aquaculture feed industry. The seed meal co-product is used as a source of protein for animal feed; however, the low value of the meal hinders profitability and more widespread application of camelina. The nutritional quality of the seed meal is largely determined by the abundance of specific seed storage proteins and their amino acid composition. Manipulation of seed storage proteins has been shown to be an effective means for either adjustment of nutritional content of seeds or for enhancing accumulation of high-value recombinant proteins in seeds. RESULTS CRISPR/Cas9 gene editing technology was used to generate deletions in the first exon of the three homoeologous genes encoding the seed storage protein CRUCIFERIN C (CsCRUC), creating an identical premature stop-codon in each and resulting in a CsCRUC knockout line. The mutant alleles were detected by applying a droplet digital PCR drop-off assay. The quantitative nature of this technique is particularly valuable when applied to polyploid species because it can accurately determine the number of mutated alleles in a gene family. Loss of CRUC protein did not alter total seed protein content; however, the abundance of other cruciferin isoforms and other seed storage proteins was altered. Consequently, seed amino acid content was significantly changed with an increase in the proportion of alanine, cysteine and proline, and decrease of isoleucine, tyrosine and valine. CsCRUC knockout seeds did not have changed total oil content, but the fatty acid profile was significantly altered with increased relative abundance of all saturated fatty acids. CONCLUSIONS This study demonstrates the plasticity of the camelina seed proteome and establishes a CRUC-devoid line, providing a framework for modifying camelina seed protein composition. The results also illustrate a possible link between the composition of the seed proteome and fatty acid profile.
Collapse
Affiliation(s)
- Wendy J. Lyzenga
- Present address: Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK S7N 4J8 Canada
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Myrtle Harrington
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Diana Bekkaoui
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Merek Wigness
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| | - Dwayne D. Hegedus
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8 Canada
| | - Kevin L. Rozwadowski
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2 Canada
| |
Collapse
|
3
|
Proteome rebalancing in transgenic Camelina occurs within the enlarged proteome induced by β-carotene accumulation and storage protein suppression. Transgenic Res 2016; 26:171-186. [PMID: 27771868 DOI: 10.1007/s11248-016-9992-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 10/16/2016] [Indexed: 01/29/2023]
Abstract
Oilseed crops are global commodities for their oil and protein seed content. We have engineered the oilseed Camelina sativa to exhibit increased protein content with a slight decrease in oil content. The introduction of a phytoene synthase gene with an RNAi cassette directed to suppress the storage protein 2S albumin resulted in seeds with an 11-24 % elevation in overall protein. The phytoene synthase cassette alone produced enhanced β-carotene content of an average 275 ± 6.10 μg/g dry seed and an overall altered seed composition of 11 % less protein and comparable nontransgenic amounts of both oil and carbohydrates. Stacking an RNAi to suppress the major 2S storage protein resulted in seeds that contain elevated protein and slight decrease in oil and carbohydrate amounts showing that Camelina rebalances its proteome within an enlarged protein content genotype. In both β-carotene enhanced seeds with/without RNAi2S suppression, the seed size was noticeably enlarged compared to nontransgenic counterpart seeds. Metabolic analysis of maturing seeds indicate that the enhanced β-carotene trait had the larger effect than the RNAi2S suppression on the seed metabolome. The use of a GRAS (generally regarded as safe) β-carotene as a visual marker in a floral dip transformation system, such as Camelina, might eliminate the need for costly regulatory and controversial antibiotic resistance markers. β-carotene enhanced RNAi2S suppressed Camelina seeds could be further developed as a rapid heterologous protein production platform in a nonfood crop leveraging its enlarged protein content and visual marker.
Collapse
|
4
|
Pandurangan S, Diapari M, Yin F, Munholland S, Perry GE, Chapman BP, Huang S, Sparvoli F, Bollini R, Crosby WL, Pauls KP, Marsolais F. Genomic Analysis of Storage Protein Deficiency in Genetically Related Lines of Common Bean (Phaseolus vulgaris). FRONTIERS IN PLANT SCIENCE 2016; 7:389. [PMID: 27066039 PMCID: PMC4814446 DOI: 10.3389/fpls.2016.00389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/14/2016] [Indexed: 05/06/2023]
Abstract
A series of genetically related lines of common bean (Phaseolus vulgaris L.) integrate a progressive deficiency in major storage proteins, the 7S globulin phaseolin and lectins. SARC1 integrates a lectin-like protein, arcelin-1 from a wild common bean accession. SMARC1N-PN1 is deficient in major lectins, including erythroagglutinating phytohemagglutinin (PHA-E) but not α-amylase inhibitor, and incorporates also a deficiency in phaseolin. SMARC1-PN1 is intermediate and shares the phaseolin deficiency. Sanilac is the parental background. To understand the genomic basis for variations in protein profiles previously determined by proteomics, the genotypes were submitted to short-fragment genome sequencing using an Illumina HiSeq 2000/2500 platform. Reads were aligned to reference sequences and subjected to de novo assembly. The results of the analyses identified polymorphisms responsible for the lack of specific storage proteins, as well as those associated with large differences in storage protein expression. SMARC1N-PN1 lacks the lectin genes pha-E and lec4-B17, and has the pseudogene pdlec1 in place of the functional pha-L gene. While the α-phaseolin gene appears absent, an approximately 20-fold decrease in β-phaseolin accumulation is associated with a single nucleotide polymorphism converting a G-box to an ACGT motif in the proximal promoter. Among residual lectins compensating for storage protein deficiency, mannose lectin FRIL and α-amylase inhibitor 1 genes are uniquely present in SMARC1N-PN1. An approximately 50-fold increase in α-amylase inhibitor like protein accumulation is associated with multiple polymorphisms introducing up to eight potential positive cis-regulatory elements in the proximal promoter specific to SMARC1N-PN1. An approximately 7-fold increase in accumulation of 11S globulin legumin is not associated with variation in proximal promoter sequence, suggesting that the identity of individual proteins involved in proteome rebalancing might also be determined at the translational level.
Collapse
Affiliation(s)
- Sudhakar Pandurangan
- Department of Biology, University of Western Ontario, LondonON, Canada
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
| | - Marwan Diapari
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
| | - Fuqiang Yin
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- Department of Bioscience and Biotechnology, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Seth Munholland
- Department of Biological Sciences, University of Windsor, WindsorON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - B. Patrick Chapman
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
| | - Shangzhi Huang
- Department of Bioscience and Biotechnology, School of Life Sciences, Sun Yat-sen UniversityGuangzhou, China
| | - Francesca Sparvoli
- Institute of Agricultural Biology and Biotechnology, National Research CouncilMilan, Italy
| | - Roberto Bollini
- Institute of Agricultural Biology and Biotechnology, National Research CouncilMilan, Italy
| | - William L. Crosby
- Department of Biological Sciences, University of Windsor, WindsorON, Canada
| | - Karl P. Pauls
- Department of Plant Agriculture, University of Guelph, GuelphON, Canada
| | - Frédéric Marsolais
- Department of Biology, University of Western Ontario, LondonON, Canada
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, LondonON, Canada
- *Correspondence: Frédéric Marsolais,
| |
Collapse
|