1
|
Boisramé A, Neuvéglise C. Development of a Vector Set for High or Inducible Gene Expression and Protein Secretion in the Yeast Genus Blastobotrys. J Fungi (Basel) 2022; 8:jof8050418. [PMID: 35628674 PMCID: PMC9144253 DOI: 10.3390/jof8050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Converting lignocellulosic biomass into value-added products is one of the challenges in developing a sustainable economy. Attempts to engineer fermenting yeasts to recover plant waste are underway. Although intensive metabolic engineering has been conducted to obtain Saccharomyces cerevisiae strains capable of metabolising pentose sugars mainly found in hemicellulose, enzymatic hydrolysis after pretreatment is still required. Blastobotrys raffinosifermentans, which naturally assimilates xylose and arabinose and displays numerous glycoside hydrolases, is a good candidate for direct and efficient conversion of renewable biomass. However, a greater diversity of tools for genetic engineering is needed. Here, we report the characterisation of four new promising promoters, a new dominant marker, and two vectors for the secretion of epitope tagged proteins along with a straightforward transformation protocol. The TDH3 promoter is a constitutive promoter stronger than TEF1, and whose activity is maintained at high temperature or in the presence of ethanol. The regulated promoters respond to high temperature for HSP26, gluconeogenic sources for PCK1 or presence of xylose oligomers for XYL1. Two expression/secretion vectors were designed based on pTEF1 and pTDH3, two endogenous signal peptides from an α-arabinanase and an α-glucuronidase, and two epitopes. A heterologous α-arabinoxylan hydrolase from Apiotrichum siamense was efficiently secreted using these two vectors.
Collapse
Affiliation(s)
- Anita Boisramé
- SPO, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France;
- AgroParisTech, Université Paris-Saclay, 75005 Paris, France
- Correspondence:
| | - Cécile Neuvéglise
- SPO, INRAE, Institut Agro, Univ Montpellier, 34060 Montpellier, France;
| |
Collapse
|
2
|
Kashyap A, Gupta R. Disrupting putative N-glycosylation site N17 in lipase Lip11 of Yarrowia lipolytica yielded a catalytically efficient and thermostable variant accompanying conformational changes. Enzyme Microb Technol 2021; 151:109922. [PMID: 34649689 DOI: 10.1016/j.enzmictec.2021.109922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/02/2021] [Accepted: 09/22/2021] [Indexed: 10/20/2022]
Abstract
Lip11 gene from oleaginous yeast Yarrowia lipolytica MSR80 was recombinantly expressed in Pichia pastoris X33. Native secretion signal present in its sequence resulted in 92 % expression in comparison to α-secretion factor which resulted to 900 U/L in the extracellular broth. Catalytic triad in Lip11, like most lipases, was formed by serine, histidine, and aspartate residues. While point mutation disrupting putative glycosylation site (N389) present towards the C-terminus ruinously effected its stability and catalytic activity, disruption of the first putative glycosylation site (N17) located towards the N-terminus presented interesting insights. Mutation resulted in a variant N1 exhibiting higher thermal and acid stability; a t1/2 of 198 min was obtained at 50 °C and it retained almost 80 % activity following incubation at pH 3. Catalytic efficiency was improved by 2.7 fold and a 10 °C rise in temperature optima was accompanied by higher relative activity in acidic range. Thermal stability corresponded to convoying structural modifications in the tertiary structure, findings of fluorescence spectroscopy suggested. Thermal fluorescence studies revealed a Tm of 65 °C for both Lip11 and N1 and λmax of Lip11 exhibited a blue shift upon refolding while no shift in the λmax of N1 was observed. A resilient tertiary structure which could fold back to its native confirmation upon thermal denaturation and increase in surface-exposed hydrophobic residues as revealed by ANS binding assay summed up to thermal stability of N1. Furthermore, circular dichroism data disclosed an alternate ratio of alpha-helices and beta-sheets; respective values changed from 36 % and 8%-27% and 19 %. Following mutation, substrate specificity remained unaffected and similar to native protein, N1 showed activation in presence of organic solvents and most divalent cations.
Collapse
Affiliation(s)
- Amuliya Kashyap
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India
| | - Rani Gupta
- Department of Microbiology, University of Delhi South Campus, New Delhi 110021, India.
| |
Collapse
|
3
|
Sanya DRA, Onésime D, Passoth V, Maiti MK, Chattopadhyay A, Khot MB. Yeasts of the Blastobotrys genus are promising platform for lipid-based fuels and oleochemicals production. Appl Microbiol Biotechnol 2021; 105:4879-4897. [PMID: 34110474 DOI: 10.1007/s00253-021-11354-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/29/2021] [Accepted: 05/16/2021] [Indexed: 12/31/2022]
Abstract
Strains of the yeast genus Blastobotrys (subphylum Saccharomycotina) represent a valuable biotechnological resource for basic biochemistry research, single-cell protein, and heterologous protein production processes. Species of this genus are dimorphic, non-pathogenic, thermotolerant, and can assimilate a variety of hydrophilic and hydrophobic substrates. These can constitute a single-cell oil platform in an emerging bio-based economy as oleaginous traits have been discovered recently. However, the regulatory network of lipogenesis in these yeasts is poorly understood. To keep pace with the growing market demands for lipid-derived products, it is critical to understand the lipid biosynthesis in these unconventional yeasts to pinpoint what governs the preferential channelling of carbon flux into lipids instead of the competing pathways. This review summarizes information relevant to the regulation of lipid metabolic pathways and prospects of metabolic engineering in Blastobotrys yeasts for their application in food, feed, and beyond, particularly for fatty acid-based fuels and oleochemicals. KEY POINTS: • The production of biolipids by heterotrophic yeasts is reviewed. • Summary of information concerning lipid metabolism regulation is highlighted. • Special focus on the importance of diacylglycerol acyltransferases encoding genes in improving lipid production is made.
Collapse
Affiliation(s)
- Daniel Ruben Akiola Sanya
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Djamila Onésime
- Université Paris-Saclay, Institut Micalis, Diversité génomique et fonctionnelle des levures, domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, SE-750 07, Uppsala, Sweden
| | - Mrinal K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Atrayee Chattopadhyay
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mahesh B Khot
- Laboratorio de Recursos Renovables, Centro de Biotecnologia, Universidad de Concepcion, Barrio Universitario s/n, Concepcion, Chile
| |
Collapse
|
4
|
Theron CW, Labuschagné M, Albertyn J, Smit MS. Heterologous coexpression of the benzoate-para-hydroxylase CYP53B1 with different cytochrome P450 reductases in various yeasts. Microb Biotechnol 2019; 12:1126-1138. [PMID: 30341814 PMCID: PMC6801163 DOI: 10.1111/1751-7915.13321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 monooxygenases (P450) are enzymes with high potential as biocatalysts for industrial applications. Their large-scale applications are, however, limited by instability and requirement for coproteins and/or expensive cofactors. These problems are largely overcome when whole cells are used as biocatalysts. We previously screened various yeast species heterologously expressing self-sufficient P450s for their potential as whole-cell biocatalysts. Most P450s are, however, not self-sufficient and consist of two or three protein component systems. Therefore, in the present study, we screened different yeast species for coexpression of P450 and P450-reductase (CPR) partners, using CYP53B1 from Rhodotorula minuta as an exemplary P450. The abilities of three different coexpressed CPR partners to support P450 activity were investigated, two from basidiomycetous origin and one from an ascomycete. The various P450-CPR combinations were cloned into strains of Saccharomyces cerevisiae, Kluyveromyces marxianus, Hansenula polymorpha, Yarrowia lipolytica and Arxula adeninivorans, using a broad-range yeast expression vector. The results obtained supported the previous finding that recombinant A. adeninivorans strains perform excellently as whole-cell biocatalysts. This study also demonstrated for the first time the P450 reductase activity of the CPRs from R. minuta and U. maydis. A very interesting observation was the variation in the supportive activity provided by the different reductase partners tested and demonstrated better P450 activity enhancement by a heterologous CPR compared to its natural partner CPR. This study highlights reductase selection as a critical variable for consideration in the pursuit of optimal P450-based catalytic systems. The usefulness of A. adeninivorans as both a host for recombinant P450s and whole-cell biocatalyst was emphasized, supporting earlier findings.
Collapse
Affiliation(s)
- Chrispian W. Theron
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
- South African DST‐NRF Centre of Excellence in Catalysis, c*changeUniversity of Cape TownCape TownSouth Africa
| | - Michel Labuschagné
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
| | - Jacobus Albertyn
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
| | - Martha S. Smit
- Department of Microbial, Biochemical and Food BiotechnologyUniversity of the Free StateBloemfonteinSouth Africa
- South African DST‐NRF Centre of Excellence in Catalysis, c*changeUniversity of Cape TownCape TownSouth Africa
| |
Collapse
|
5
|
Manfrão-Netto JHC, Gomes AMV, Parachin NS. Advances in Using Hansenula polymorpha as Chassis for Recombinant Protein Production. Front Bioeng Biotechnol 2019; 7:94. [PMID: 31119131 PMCID: PMC6504786 DOI: 10.3389/fbioe.2019.00094] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/16/2019] [Indexed: 11/13/2022] Open
Abstract
The methylotrophic yeast Hansenula polymorpha, known as a non-conventional yeast, is used for the last 30 years for the production of recombinant proteins, including enzymes, vaccines, and biopharmaceuticals. Although a large number of reviews have been published elucidating the applications of this yeast as a cell factory, the latest was released about 10 years ago. Therefore, this review aimed at summarizing available information on the use of H. polymorpha as a host for recombinant protein production in the last decade. Examples of chemicals and virus-like particles produced using this yeast also are discussed. Firstly, the aspects that feature this yeast as a host for recombinant protein production are highlighted including the techniques available for its genetic manipulation as well as strategies for cultivation in bioreactors. Special attention is given to the novel genomic editing tools, mainly CRISPR/Cas9 that was recently established in this yeast. Finally, recent examples of using H. polymorpha as an expression platform are presented and discussed. The production of human Parathyroid Hormone (PTH) and Staphylokinase (SAK) in H. polymorpha are described as case studies for process establishment in this yeast. Altogether, this review is a guideline for this yeast utilization as an expression platform bringing a thorough analysis of the genetic aspects and fermentation protocols used up to date, thus encouraging the production of novel biomolecules in H. polymorpha.
Collapse
Affiliation(s)
| | - Antônio Milton Vieira Gomes
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
6
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
7
|
de Almeida JM, Moure VR, Müller-Santos M, de Souza EM, Pedrosa FO, Mitchell DA, Krieger N. Tailoring recombinant lipases: keeping the His-tag favors esterification reactions, removing it favors hydrolysis reactions. Sci Rep 2018; 8:10000. [PMID: 29968752 PMCID: PMC6030132 DOI: 10.1038/s41598-018-27579-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
We determined the effect of the His-tag on the structure, activity, stability and immobilization of LipC12, a highly active lipase from a metagenomic library. We purified LipC12 with a N-terminal His-tag and then removed the tag using tobacco etch virus (TEV) protease. Circular dichroism analysis showed that the overall structure of LipC12 was largely unaffected by His-tag removal. The specific hydrolytic activities against natural and artificial substrates were significantly increased by the removal of the His-tag. On the other hand, His-tagged LipC12 was significantly more active and stable in the presence of polar organic solvents than untagged LipC12. The immobilization efficiency on Immobead 150 was 100% for both forms of LipC12 and protein desorption studies confirmed that the His-tag does not participate in the covalent binding of the enzyme. In the case of immobilized LipC12, the His-tag negatively influenced the hydrolytic activity, as it had for the free lipase, however, it positively influenced the esterification activity. These results raise the possibility of tailoring recombinant lipases for different applications, where the His-tag may be retained or removed, as appropriate for the desired activity.
Collapse
Affiliation(s)
- Janaina Marques de Almeida
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil
| | - Vivian Rotuno Moure
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil
| | - Marcelo Müller-Santos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil
| | - Fábio Oliveira Pedrosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil
| | - David Alexander Mitchell
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Cx.P. 19046 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil
| | - Nadia Krieger
- Departamento de Química, Universidade Federal do Paraná, Cx.P. 19081 Centro Politécnico, Curitiba, 81531-980, Paraná, Brazil.
| |
Collapse
|
8
|
Expression of a thermotolerant laccase from Pycnoporus sanguineus in Trichoderma reesei and its application in the degradation of bisphenol A. J Biosci Bioeng 2018; 125:371-376. [DOI: 10.1016/j.jbiosc.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 09/22/2017] [Accepted: 11/19/2017] [Indexed: 11/19/2022]
|
9
|
Malak A, Baronian K, Kunze G. Blastobotrys (Arxula) adeninivorans: a promising alternative yeast for biotechnology and basic research. Yeast 2016; 33:535-547. [PMID: 27372304 DOI: 10.1002/yea.3180] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 01/31/2023] Open
Abstract
Blastobotrys adeninivorans (syn. Arxula adeninivorans) is a non-conventional, non-pathogenic, imperfect, haploid yeast, belonging to the subphylum Saccharomycotina, which has to date received comparatively little attention from researchers. It possesses unusual properties such as thermo- and osmotolerance, and a broad substrate spectrum. Depending on the cultivation temperature B. (A.) adeninivorans exhibits different morphological forms and various post-translational modifications and protein expression properties that are strongly correlated with the morphology. The genome has been completely sequenced and, in addition, there is a well-developed transformation/expression platform, which makes rapid, simple gene manipulations possible. This yeast species is a very good host for homologous and heterologous gene expression and is also a useful gene donor. Blastobotrys (A.) adeninivorans is able to use a very wide range of substrates as carbon and/or nitrogen sources and is an interesting organism owing to the presence of many metabolic pathways, for example degradation of n-butanol, purines and tannin. In addition, its unusual properties and robustness make it a useful bio-component for whole cell biosensors. There are currently a number of products on the market produced by B. (A.) adeninivorans and further investigation may contribute further innovative solutions for current challenges that exist in the biotechnology industry. Additionally it may become a useful alternative to existing commercial yeast strains and as a model organism in research. In this review we present information relevant to the exploitation of B. (A.) adeninivorans in research and industrial settings. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Anna Malak
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany
| | - Kim Baronian
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466, Gatersleben, Germany.
| |
Collapse
|