1
|
Hu Y, Ni C, Wang Y, Yu X, Wu H, Tu J, Li C, Xiao Z, Wen L. Research Progress on the Preparation and Function of Antioxidant Peptides from Walnuts. Int J Mol Sci 2023; 24:14853. [PMID: 37834300 PMCID: PMC10573205 DOI: 10.3390/ijms241914853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Food-derived peptides have good antioxidant activity and are highly safe for humans; consequently, there has been continuous growth in research on antioxidants, with potential applications in food, medicine, cosmetics, and other fields. Among food-derived peptides, walnut-derived peptides have attracted increasing attention as food-derived peptides rich in eight essential amino acids. This review summarizes the progress made in the development and identification of antioxidant peptides in walnut proteins. This article mainly describes the interaction between reactive oxygen species and cellular antioxidant products, modulation of enzyme content and activity, and regulation of the redox signaling pathways and analyzes the mechanisms of reduction in oxidative stress. Finally, the complex structure-activity relationships of walnut-derived peptides are analyzed based on their amino acid composition and secondary structure of the polypeptides. This review provides a theoretical basis for the production of walnut-derived antioxidant peptides and could help promote the development of the walnut industry.
Collapse
Affiliation(s)
- Yuxi Hu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Ce Ni
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Yingying Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Xun Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Jia Tu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| |
Collapse
|
2
|
Strategies for Optimizing the Production of Proteins and Peptides with Multiple Disulfide Bonds. Antibiotics (Basel) 2020; 9:antibiotics9090541. [PMID: 32858882 PMCID: PMC7558204 DOI: 10.3390/antibiotics9090541] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Bacteria can produce recombinant proteins quickly and cost effectively. However, their physiological properties limit their use for the production of proteins in their native form, especially polypeptides that are subjected to major post-translational modifications. Proteins that rely on disulfide bridges for their stability are difficult to produce in Escherichia coli. The bacterium offers the least costly, simplest, and fastest method for protein production. However, it is difficult to produce proteins with a very large size. Saccharomyces cerevisiae and Pichia pastoris are the most commonly used yeast species for protein production. At a low expense, yeasts can offer high protein yields, generate proteins with a molecular weight greater than 50 kDa, extract signal sequences, and glycosylate proteins. Both eukaryotic and prokaryotic species maintain reducing conditions in the cytoplasm. Hence, the formation of disulfide bonds is inhibited. These bonds are formed in eukaryotic cells during the export cycle, under the oxidizing conditions of the endoplasmic reticulum. Bacteria do not have an advanced subcellular space, but in the oxidizing periplasm, they exhibit both export systems and enzymatic activities directed at the formation and quality of disulfide bonds. Here, we discuss current techniques used to target eukaryotic and prokaryotic species for the generation of correctly folded proteins with disulfide bonds.
Collapse
|
3
|
Gomes C, Ferreira D, Carvalho JPF, Barreto CAV, Fernandes J, Gouveia M, Ribeiro F, Duque AS, Vieira SI. Current genetic engineering strategies for the production of antihypertensive ACEI peptides. Biotechnol Bioeng 2020; 117:2610-2628. [PMID: 32369185 DOI: 10.1002/bit.27373] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Hypertension is a major and highly prevalent risk factor for various diseases. Among the most frequently prescribed antihypertensive first-line drugs are synthetic angiotensin I-converting enzyme inhibitors (ACEI). However, since their use in hypertension therapy has been linked to various side effects, interest in the application of food-derived ACEI peptides (ACEIp) as antihypertensive agents is rapidly growing. Although promising, the industrial production of ACEIp through conventional methods such as chemical synthesis or enzymatic hydrolysis of food proteins has been proven troublesome. We here provide an overview of current antihypertensive therapeutics, focusing on ACEI, and illustrate how biotechnology and bioengineering can overcome the limitations of ACEIp large-scale production. Latest advances in ACEIp research and current genetic engineering-based strategies for heterologous production of ACEIp (and precursors) are also presented. Cloning approaches include tandem repeats of single ACEIp, ACEIp fusion to proteins/polypeptides, joining multivariate ACEIp into bioactive polypeptides, and producing ACEIp-containing modified plant storage proteins. Although bacteria have been privileged ACEIp heterologous hosts, particularly when testing for new genetic engineering strategies, plants and microalgae-based platforms are now emerging. Besides being generally safer, cost-effective and scalable, these "pharming" platforms can perform therelevant posttranslational modifications and produce (and eventually deliver) biologically active protein/peptide-based antihypertensive medicines.
Collapse
Affiliation(s)
- Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland.,Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Diana Ferreira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - João P F Carvalho
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Carlos A V Barreto
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Joana Fernandes
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Marisol Gouveia
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Fernando Ribeiro
- School of Health Sciences (ESSUA), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| | - Ana S Duque
- Plant Cell Biotechnology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Green-it Unit, Oeiras, Portugal
| | - Sandra I Vieira
- Department of Medical Sciences (DCM), Institute of Biomedicine (iBiMED), Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
4
|
Insertions of antihypertensive peptides and their applications in pharmacy and functional foods. Appl Microbiol Biotechnol 2019; 103:2493-2505. [DOI: 10.1007/s00253-019-09633-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/15/2022]
|
5
|
Ochoa-Méndez CE, Lara-Hernández I, González LM, Aguirre-Bañuelos P, Ibarra-Barajas M, Castro-Moreno P, González-Ortega O, Soria-Guerra RE. Bioactivity of an antihypertensive peptide expressed in Chlamydomonas reinhardtii. J Biotechnol 2016; 240:76-84. [PMID: 27816654 DOI: 10.1016/j.jbiotec.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/25/2016] [Accepted: 11/01/2016] [Indexed: 12/21/2022]
Abstract
In this study, we developed a transplastomic C. reinhardtii strain that accumulates anti-hypertensive peptides. Tandem repeats of VLPVP peptide were included. PCR analysis confirmed the presence of the transgene in the modified strains. After in vitro digestion of biomass of a recombinant C. reinhardtii strain the VLVPV peptide was identified and quantified by HPLC. The highest expression line produced 0.292mg of recombinant protein per mg of freeze-dried biomass. Intragastric administration of the genetically modified strain to spontaneous hypertensive rats at a dose of 30mg/kg of body weight of recombinant protein significantly reduced systolic blood pressure. At the same dose, the recombinant protein exerts an ACE-inhibitory effect. This is the first study that indicates the potential of this microalga producing an antihypertensive peptide as a dietary supplement for hypertension patients.
Collapse
Affiliation(s)
- Celma Estefanía Ochoa-Méndez
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Ignacio Lara-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Luzmila Martínez González
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Patricia Aguirre-Bañuelos
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Maximiliano Ibarra-Barajas
- UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Tlalnepantla 54090, Mexico
| | - Patricia Castro-Moreno
- UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Tlalnepantla 54090, Mexico
| | - Omar González-Ortega
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico
| | - Ruth Elena Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, SLP 78210, Mexico.
| |
Collapse
|