1
|
Rizzo A, Aranda C, Galman J, Alcasabas A, Pandya A, Bornadel A, Costa B, Hailes HC, Ward JM, Jeffries JWE, Dominguez B. Broadening The Substrate Scope of Aldolases Through Metagenomic Enzyme Discovery. Chembiochem 2024; 25:e202400278. [PMID: 38953596 DOI: 10.1002/cbic.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Bio-processes based on enzymatic catalysis play a major role in the development of green, sustainable processes, and the discovery of new enzymes is key to this approach. In this work, we analysed ten metagenomes and retrieved 48 genes coding for deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) using a sequence-based approach. These sequences were recombinantly expressed in Escherichia coli and screened for activity towards a range of aldol additions. Among these, one enzyme, DERA-61, proved to be particularly interesting and catalysed the aldol addition of furfural or benzaldehyde with acetone, butanone and cyclobutanone with unprecedented activity. The product of these reactions, aldols, can find applications as building blocks in the synthesis of biologically active compounds. Screening was carried out to identify optimized reaction conditions targeting temperature, pH, and salt concentrations. Lastly, the kinetics and the stereochemistry of the products were investigated, revealing that DERA-61 and other metagenomic DERAs have superior activity and stereoselectivity when they are provided with non-natural substrates, compared to well-known DERAs.
Collapse
Affiliation(s)
- Andrea Rizzo
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Carmen Aranda
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - James Galman
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Annette Alcasabas
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Akash Pandya
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Amin Bornadel
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Bruna Costa
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| | - Helen C Hailes
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AK, UK
| | - John M Ward
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, London, WC1E 6BT, UK
| | - Jack W E Jeffries
- Department of Biochemical Engineering, University College London, Gower Street, Bernard Katz Building, London, WC1E 6BT, UK
| | - Beatriz Dominguez
- Johnson Matthey, Unit 260, Cambridge Science Park, Cambridge, CB4 0PZ
| |
Collapse
|
2
|
Ju SB, Seo MJ, Yeom SJ. In Vitro One-Pot 3-Hydroxypropanal Production from Cheap C1 and C2 Compounds. Int J Mol Sci 2022; 23:ijms23073990. [PMID: 35409349 PMCID: PMC8999356 DOI: 10.3390/ijms23073990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/02/2022] [Accepted: 04/02/2022] [Indexed: 12/04/2022] Open
Abstract
One- or two-carbon (C1 or C2) compounds have been considered attractive substrates because they are inexpensive and abundant. Methanol and ethanol are representative C1 and C2 compounds, which can be used as bio-renewable platform feedstocks for the biotechnological production of value-added natural chemicals. Methanol-derived formaldehyde and ethanol-derived acetaldehyde can be converted to 3-hydroxypropanal (3-HPA) via aldol condensation. 3-HPA is used in food preservation and as a precursor for 3-hydroxypropionic acid and 1,3-propanediol that are starting materials for manufacturing biocompatible plastic and polytrimethylene terephthalate. In this study, 3-HPA was biosynthesized from formaldehyde and acetaldehyde using deoxyribose-5-phosphate aldolase from Thermotoga maritima (DERATma) and cloned and expressed in Escherichia coli for 3-HPA production. Under optimum conditions, DERATma produced 7 mM 3-HPA from 25 mM substrate (formaldehyde and acetaldehyde) for 60 min with 520 mg/L/h productivity. To demonstrate the one-pot 3-HPA production from methanol and ethanol, we used methanol dehydrogenase from Lysinibacillus xylanilyticus (MDHLx) and DERATma. One-pot 3-HPA production via aldol condensation of formaldehyde and acetaldehyde from methanol and ethanol, respectively, was investigated under optimized reaction conditions. This is the first report on 3-HPA production from inexpensive alcohol substrates (methanol and ethanol) by cascade reaction using DERATma and MDHLx.
Collapse
Affiliation(s)
- Su-Bin Ju
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yong-bong-ro 77, Gwangju 61186, Korea;
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Min-Ju Seo
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Soo-Jin Yeom
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, Yong-bong-ro 77, Gwangju 61186, Korea;
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
- Correspondence:
| |
Collapse
|
3
|
Xuan K, Yang G, Wu Z, Xu Y, Zhang R. Efficient synthesis of (3R,5S)-6-chloro-2,4,6-trideoxyhexapyranose by using new 2-deoxy-d-ribose-5-phosphate aldolase from Streptococcus suis with moderate activity and aldehyde tolerance. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Haridas M, Abdelraheem EMM, Hanefeld U. 2-Deoxy-D-ribose-5-phosphate aldolase (DERA): applications and modifications. Appl Microbiol Biotechnol 2018; 102:9959-9971. [PMID: 30284013 PMCID: PMC6244999 DOI: 10.1007/s00253-018-9392-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/25/2022]
Abstract
2-Deoxy-D-ribose-5-phosphate aldolase (DERA) is a class I aldolase that offers access to several building blocks for organic synthesis. It catalyzes the stereoselective C-C bond formation between acetaldehyde and numerous other aldehydes. However, the practical application of DERA as a biocatalyst is limited by its poor tolerance towards industrially relevant concentrations of aldehydes, in particular acetaldehyde. Therefore, the development of proper experimental conditions, including protein engineering and/or immobilization on appropriate supports, is required. The present review is aimed to provide a brief overview of DERA, its history, and progress made in understanding the functioning of the enzyme. Furthermore, the current understanding regarding aldehyde resistance of DERA and the various optimizations carried out to modify this property are discussed.
Collapse
Affiliation(s)
- Meera Haridas
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - Eman M M Abdelraheem
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Ulf Hanefeld
- Biokatalyse, Afdeling Biotechnologie, Technische Universiteit Delft, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
5
|
Wakai S. Biochemical and thermodynamic analyses of energy conversion in extremophiles. Biosci Biotechnol Biochem 2018; 83:49-64. [PMID: 30381012 DOI: 10.1080/09168451.2018.1538769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
A variety of extreme environments, characterized by extreme values of various physicochemical parameters (temperature, pressure, salinity, pH, and so on), are found on Earth. Organisms that favorably live in such extreme environments are called extremophiles. All living organisms, including extremophiles, must acquire energy to maintain cellular homeostasis, including extremophiles. For energy conversion in harsh environments, thermodynamically useful reactions and stable biomolecules are essential. In this review, I briefly summarize recent studies of extreme environments and extremophiles living in these environments and describe energy conversion processes in various extremophiles based on my previous research. Furthermore, I discuss the correlation between the biological system of electrotrophy, a third biological energy acquisition system, and the mechanism underlying microbiologically influenced corrosion. These insights into energy conversion in extremophiles may improve our understanding of the "limits of life". Abbreviations: PPi: pyrophosphate; PPase: pyrophosphatase; ITC: isothermal titration microcalorimetry; SVNTase: Shewanella violacea 5'-nucleotidase; SANTase: Shewanella amazonensis 5'-nucleotidase.
Collapse
Affiliation(s)
- Satoshi Wakai
- a Graduate School of Science, Technology and Innovation , Kobe University , Kobe , Japan
| |
Collapse
|
6
|
|
7
|
Amoozegar MA, Siroosi M, Atashgahi S, Smidt H, Ventosa A. Systematics of haloarchaea and biotechnological potential of their hydrolytic enzymes. MICROBIOLOGY-SGM 2017; 163:623-645. [PMID: 28548036 DOI: 10.1099/mic.0.000463] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Halophilic archaea, also referred to as haloarchaea, dominate hypersaline environments. To survive under such extreme conditions, haloarchaea and their enzymes have evolved to function optimally in environments with high salt concentrations and, sometimes, with extreme pH and temperatures. These features make haloarchaea attractive sources of a wide variety of biotechnological products, such as hydrolytic enzymes, with numerous potential applications in biotechnology. The unique trait of haloarchaeal enzymes, haloenzymes, to sustain activity under hypersaline conditions has extended the range of already-available biocatalysts and industrial processes in which high salt concentrations inhibit the activity of regular enzymes. In addition to their halostable properties, haloenzymes can also withstand other conditions such as extreme pH and temperature. In spite of these benefits, the industrial potential of these natural catalysts remains largely unexplored, with only a few characterized extracellular hydrolases. Because of the applied impact of haloarchaea and their specific ability to live in the presence of high salt concentrations, studies on their systematics have intensified in recent years, identifying many new genera and species. This review summarizes the current status of the haloarchaeal genera and species, and discusses the properties of haloenzymes and their potential industrial applications.
Collapse
Affiliation(s)
- Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Maryam Siroosi
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| |
Collapse
|
8
|
Wakai S, Abe A, Fujii S, Nakasone K, Sambongi Y. Pyrophosphate hydrolysis in the extremely halophilic archaeon Haloarcula japonica is catalyzed by a single enzyme with a broad ionic strength range. Extremophiles 2017; 21:471-477. [DOI: 10.1007/s00792-017-0917-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/27/2017] [Indexed: 11/30/2022]
|