1
|
Xu D, Shi J, Jiang S, Meng S, Cheng Z, Wu W, Chang L, Xie Y, Gao Y, Xue Y, Zhang Y. Shotgun and targeted proteomics of Mycolicibacterium smegmatis highlight the role of arginine phosphorylation in the functional adaptation to its environment. J Proteomics 2025; 314:105388. [PMID: 39884554 DOI: 10.1016/j.jprot.2025.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/26/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
Although the phosphorylation of serine (S), threonine (T), and tyrosine (Y) is well-established, arginine phosphorylation (pR) has recently garnered significant attention due to its crucial role in bacteria pathogenicity and stress response. Mycolicibacterium smegmatis, a nonpathogenic surrogate of Mycobacterium tuberculosis, serves as a model for studying mycobacterial pathogenesis. A recent proteomics study identified six pR proteins in M. smegmatis. To gain a more comprehensive understanding, we performed pR profiling using mass spectrometry in combination with two distinct phosphopeptide enrichment strategies: titanium-immobilized metal ion affinity chromatography (Ti4+-IMAC) and Fe-NTA cartridge purification. This approach led to the identification of 1192 shared pR peptides with 1553 pR sites in M. smegmatis following both competitive and non-competitive scoring assessments for pR and pS/T/Y. Further stringent filtering through manual verification resulted in 58 high-confident pR sites across 57 proteins. These confirmed pR-proteins are functionally related, particularly in DNA binding and ATP binding. Alterations in the modification of three pR sites during the logarithmic and stationary phases at the phosphorylation level, but not at the total cell protein level, further suggest the role of pR in the bacterium's functional adaptation to its environment. SIGNIFICANCE: Our findings reveal that pR proteins are prevalent and play roles in DNA-binding and ATP-binding activities, providing insights into the broader biological functions of pR peptides in other genetically diverse species. The reliable identification of bacterial pR events in M. smegmatis not only propels the study of pR within the realm of proteomics but also paves the way for exploring its detailed function in bacteria.
Collapse
Affiliation(s)
- Danyang Xu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiahui Shi
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Songhao Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Shuhong Meng
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Zhiyuan Cheng
- School of Mathematical Sciences, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yuping Xie
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yuan Gao
- Central Laboratory of College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yu Xue
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
| |
Collapse
|
2
|
Pourani Z, Keramati M, Komijani S, Golkar M, Cohan RA, Mohseni N, Valizadeh V. Efficient periplasmic expression of active lysyl endopeptidase and optimizing the purification methods. Protein Expr Purif 2025; 226:106618. [PMID: 39505092 DOI: 10.1016/j.pep.2024.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Recombinant production of lysyl endopeptidase (Lys-C) which is frequently used in proteomics is still challenging due to its complex structure. Herein, periplasmic expression and determining effective factors for recovery of the active enzyme were investigated. The codon-optimized Lys-C gene was cloned into pET26b (+) for periplasmic expression in E. coli Rosetta (DE3). The following parameters affecting expression level and activity of Lys-C were investigated including IPTG concentration (0.05-1 mM), cell density (OD600: 0.45-0.8) at induction time, presence of reducing agents (glutathione or cysteine, 0-10 mM) in culture medium or periplasmic extraction buffers, and harvesting time (6 or 20 h). Lys-C was then purified by DEAE and Ni-NTA chromatography methods. The highest expression level was obtained at 0.05 mM IPTG (5.49 %), also 8 mM cysteine, induction at OD600: 0.45 and 6 h incubation increased enzyme activity to 23.5 %, 13.3 %, and 76.4 %, respectively. The enzyme activity of Lys-C in the presence of 4 mM glutathione and extraction buffers containing 2 mM 2-mercaptoethanol (2 ME) was 81.6 % higher than the condition without reducing agents. Also, 8 mM cysteine in the culture medium and 2 mM 2 ME in extraction increased the activity up to 29.7 %. Moreover, optimization of purification process enhanced the enzyme activity from 0.217 mU to 1.76 mU. Statistical analysis showed the examined parameters significantly affected enzyme activity (p < 0.05). The presence of the reducing agents in the culture medium and extraction buffers presumably improves the Lys-C folding and increases the enzyme activity.
Collapse
Affiliation(s)
- Zahra Pourani
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Keramati
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Komijani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Golkar
- Molecular Parasitology Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Nastaran Mohseni
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Vahideh Valizadeh
- Nano-Biotechnology Department, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
3
|
Dong J, Li G, Wang J, Liu B, Xiang Y, Jiang S, Shi J, Wu W, Wang G, Chang L, Wu C, Liu H, Xu P, Zhang Y. Mycobacterium tuberculosis short mutant H37Rv-S with reduced growth adaptability is more readily recognized by the host immune system. Microb Pathog 2025; 198:107128. [PMID: 39566829 DOI: 10.1016/j.micpath.2024.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Mycobacterium tuberculosis (Mtb) is the bacterium responsible for causing Tuberculosis (TB) and understanding its mechanisms of virulence, persistence, and pathogenesis is a global research priority. Attenuated strains of Mtb are valuable tools for investigating the genes and proteins involved in these processes. In this study, we identified an Mtb mutant, H37Rv-S, which exhibits a shorter mycelium, smoother colony, slower growth, and reduced antibiotics resistance compared to the wild-type strain H37Rv. Genomic sequencing revealed 34 mutation events in the coding regions of H37Rv-S, affecting 31 genes. We conducted TMT-labeling quantitative proteomics to compare the expression differences between H37Rv-S and H37Rv, as well as their infected bone marrow derived macrophages (BMDMs). The results showed that 716 protein groups (23.96 %) in H37Rv-S and 115 protein groups (2.99 %) in the infected BMDMs were differentially expressed. The dysregulated proteins in H37Rv-S correspond with its phenotype characteristics. Among the 31 affected genes in H37Rv-S, 10 showed upregulation and 1 showed downregulation at the protein level. Notable, 16 associated network proteins in the phoP/phoR system were significantly dysregulated due to a frameshift mutation in phoP, altering its protein sequence after Phe45. The dysregulated host proteins in H37Rv-S were associated with immune response, necroptosis, and ferroptosis. Additionally, H37Rv-S demonstrated reduced survival capability in strain fluorescence labeling and colony-forming unit (CFU) counting post-infection of BMDM cells. These findings suggest that H37Rv-S is an attenuated strain exhibiting defective phenotype characteristics and is more readily recognized and eliminated by the host. This enhanced understanding of the differences between virulent and attenuated strains could facilitate the development of new targets and therapeutics for TB prevention and treatment.
Collapse
Affiliation(s)
- Jilin Dong
- College of Life Sciences, Hebei University, 071002, Baoding, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Guilian Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Jiahao Wang
- School of Basic Medical Science, Anhui Medical University, 230032, Hefei, China
| | - Bingbing Liu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, 473004, Nanyang, China
| | - Yu Xiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Songhao Jiang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Jiahui Shi
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Wenhui Wu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China
| | - Guibin Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Lei Chang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China
| | - Chen Wu
- College of Life Sciences, Hebei University, 071002, Baoding, China.
| | - Haican Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China.
| | - Ping Xu
- College of Life Sciences, Hebei University, 071002, Baoding, China; State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China; School of Basic Medical Science, Anhui Medical University, 230032, Hefei, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medicine Collage, Guangzhou Higher Education Mega Center, Guangzhou University of Chinese Medicine, 510006, Guangzhou, China.
| | - Yao Zhang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, 102206, Beijing, China.
| |
Collapse
|
4
|
Wu X, Zhang T, Mao M, Zhang Y, Zhang Z, Xu P. A methodological exploration of distinguishing hair quality based on hair proteomics. Proteome Sci 2024; 22:5. [PMID: 38693542 PMCID: PMC11064416 DOI: 10.1186/s12953-024-00229-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/11/2024] [Indexed: 05/03/2024] Open
Abstract
Hair is an advantageous biological sample due to its recordable, collectable, and storable nature. Hair's primary components are keratin and keratin-associated proteins. Owing to its abundance of cystine, keratin possesses impressive mechanical strength and chemical stability, formed by creating disulfide bonds as crosslinks within the protein peptide chain. Furthermore, keratin is cross-linked with keratin-associated proteins to create a complex network structure that provides the hair with strength and rigidity. Protein extraction serves as the foundation for hair analysis research. Bleaching hair causes damage to the structure between keratin and keratin-associated proteins, resulting in texture issues and hair breakage. This article outlines various physical treatment methods and lysate analysis that enhance the efficiency of hair protein extraction. The PLEE method achieves a three-fold increase in hair protein extraction efficiency when using a lysis solution containing SDS and combining high temperatures with intense shaking, compared to previous methods found in literature. We utilized the PLEE method to extract hair from both normal and damaged groups. Normal samples identified 156-157 proteins, including 51 keratin and keratin-associated proteins. The damaged group consisted of 155-158 identified proteins, of which 48-50 were keratin and keratin-associated proteins. Bleaching did not cause any notable difference in the protein identification of hair. However, it did reduce coverage of keratin and keratin-associated proteins significantly. Our hair protein extraction method provides extensive coverage of the hair proteome. Our findings indicate that bleaching damage results in subpar hair quality due to reduced coverage of protein primary sequences in keratin and keratin-associated proteins.
Collapse
Affiliation(s)
- Xiaolin Wu
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Mingsong Mao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China
- Anhui Medical University, Hefei, 230022, China
| | - Yali Zhang
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
| | - Ping Xu
- School of Medicine, Guizhou University, Guiyang, 550025, Guizhou, China.
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, 102206, China.
- Research Unit of Proteomics & Research and Development of New Drug, Chinese Academy of Medical Sciences, Beijing, 102206, China.
- Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
5
|
Duan X, Zhang Y, Huang X, Ma X, Gao H, Wang Y, Xiao Z, Huang C, Wang Z, Li B, Yang W, Wang Y. GreenPhos, a universal method for in-depth measurement of plant phosphoproteomes with high quantitative reproducibility. MOLECULAR PLANT 2024; 17:199-213. [PMID: 38018035 DOI: 10.1016/j.molp.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 11/30/2023]
Abstract
Protein phosphorylation regulates a variety of important cellular and physiological processes in plants. In-depth profiling of plant phosphoproteomes has been more technically challenging than that of animal phosphoproteomes. This is largely due to the need to improve protein extraction efficiency from plant cells, which have a dense cell wall, and to minimize sample loss resulting from the stringent sample clean-up steps required for the removal of a large amount of biomolecules interfering with phosphopeptide purification and mass spectrometry analysis. To this end, we developed a method with a streamlined workflow for highly efficient purification of phosphopeptides from tissues of various green organisms including Arabidopsis, rice, tomato, and Chlamydomonas reinhardtii, enabling in-depth identification with high quantitative reproducibility of about 11 000 phosphosites, the greatest depth achieved so far with single liquid chromatography-mass spectrometry (LC-MS) runs operated in a data-dependent acquisition (DDA) mode. The mainstay features of the method are the minimal sample loss achieved through elimination of sample clean-up before protease digestion and of desalting before phosphopeptide enrichment and hence the dramatic increases of time- and cost-effectiveness. The method, named GreenPhos, combined with single-shot LC-MS, enabled in-depth quantitative identification of Arabidopsis phosphoproteins, including differentially phosphorylated spliceosomal proteins, at multiple time points during salt stress and a number of kinase substrate motifs. GreenPhos is expected to serve as a universal method for purification of plant phosphopeptides, which, if samples are further fractionated and analyzed by multiple LC-MS runs, could enable measurement of plant phosphoproteomes with an unprecedented depth using a given mass spectrometry technology.
Collapse
Affiliation(s)
- Xiaoxiao Duan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Gao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongshu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bolong Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Yang
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Shi J, Jiang S, Wang Q, Dong J, Zhu H, Wang P, Meng S, Zhang Z, Chang L, Wang G, Xu X, Xu P, Zhang Y. Spleen-based proteogenomics reveals that Escherichia coli infection induces activation of phagosome maturation pathway in chicken. Virulence 2023; 14:2150453. [PMID: 36411420 PMCID: PMC9817119 DOI: 10.1080/21505594.2022.2150453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) leads to economic losses in poultry industry and is also a threat to human health. Various strategies were used for searching virulence factors, while little is known about the mechanism by which APEC survives in host or is eliminated by host. Thus, chicken colibacillosis model was constructed by intraperitoneally injecting E. coli O78 in this study, then the protein dynamic expression of spleen was characterized at different post-infection times by quantitative proteome. Comparative analysis showed that E. coli induced significant dysregulation at 72 h post infection in spleen tissue. Transcriptomic method was further used to assess the changes of dysregulated proteins at 72 h post infection at the mRNA level. Total 278 protein groups (5.7%) and 2,443 genes (24.4%) were dysregulated, respectively. The upregulated proteins and genes were consistently enriched in phagosome and lysosome pathways, indicating E. coli infection activates phagosome maturation pathway. The matured phagolysosome might kill the invasive E. coli. This study illuminated the genetic dysregulation in chicken spleen at the protein and mRNA levels after E. coli infecting and identified candidate genes for host response to APEC infection.
Collapse
Affiliation(s)
- Jiahui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Songhao Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Qiang Wang
- College of veterinary medicine, Yangzhou University, Yangzhou, China
| | - Jilin Dong
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Huiming Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
- Department of Biomedicine, School of Medicine, Guizhou University, Guiyang, China
| | - Peijia Wang
- College of veterinary medicine, Yangzhou University, Yangzhou, China
| | - Shuhong Meng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Guibin Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| | - Xiaoqin Xu
- College of veterinary medicine, Yangzhou University, Yangzhou, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
- Department of Biomedicine, School of Medicine, Guizhou University, Guiyang, China
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, China
| |
Collapse
|
7
|
Long Q, Zhang Z, Li Y, Zhong Y, Liu H, Chang L, Ying Y, Zuo T, Wang Y, Xu P. Phosphoproteome reveals long-term potentiation deficit following treatment of ultra-low dose soman exposure in mice. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132211. [PMID: 37572605 DOI: 10.1016/j.jhazmat.2023.132211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Soman, a warfare nerve agent, poses a significant threat by inducing severe brain damage that often results in death. Nonetheless, our understanding of the biological changes underlying persistent neurocognitive dysfunction caused by low dosage of soman remains limited. This study used mice to examine the effects of different doses of soman over time. Phosphoproteomic analysis of the mouse brain is the first time to be used to detect toxic effects of soman at such low or ultra-low doses, which were undetectable based on measuring the activity of acetylcholinesterase at the whole-animal level. We also found that phosphoproteome alterations could accurately track the soman dose, irrespective of the sampling time. Moreover, phosphoproteome revealed a rapid and adaptive cellular response to soman exposure, with the points of departure 8-38 times lower than that of acetylcholinesterase activity. Impaired long-term potentiation was identified in phosphoproteomic studies, which was further validated by targeted quantitative proteomics, immunohistochemistry, and immunofluorescence analyses, with significantly increased levels of phosphorylation of protein phosphatase 1 in the hippocampus following soman exposure. This increase in phosphorylation inhibits long-term potentiation, ultimately leading to long-term memory dysfunction in mice.
Collapse
Affiliation(s)
- Qi Long
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Yuan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang 550025, China
| | - Yuxu Zhong
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China
| | - Hongyan Liu
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China
| | - Ying Ying
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China
| | - Tao Zuo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China.
| | - Yong'an Wang
- Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences PLA China, Beijing 100850, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing 102206, China; School of Basic Medicine, Anhui Medical University, Hefei 230032, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang 550025, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
8
|
Omics analysis of Mycobacterium tuberculosis isolates uncovers Rv3094c, an ethionamide metabolism-associated gene. Commun Biol 2023; 6:156. [PMID: 36750726 PMCID: PMC9904262 DOI: 10.1038/s42003-023-04433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
Global control of the tuberculosis epidemic is threatened by increasing prevalence of drug resistant M. tuberculosis isolates. Many genome-wide studies focus on SNP-associated drug resistance mechanisms, but drug resistance in 5-30% of M. tuberculosis isolates (varying with antibiotic) appears unrelated to reported SNPs, and alternative drug resistance mechanisms involving variation in gene/protein expression are not well-studied. Here, using an omics approach, we identify 388 genes with lineage-related differential expression and 68 candidate drug resistance-associated gene pairs/clusters in 11 M. tuberculosis isolates (variable lineage/drug resistance profiles). Structural, mutagenesis, biochemical and bioinformatic studies on Rv3094c from the Rv3093c-Rv3095 gene cluster, a gene cluster selected for further investigation as it contains a putative monooxygenase/repressor pair and is associated with ethionamide resistance, provide insights on its involvement in ethionamide sulfoxidation, the initial step in its activation. Analysis of the structure of Rv3094c and its complex with ethionamide and flavin mononucleotide, to the best of our knowledge the first structures of an enzyme involved in ethionamide activation, identify key residues in the flavin mononucleotide and ethionamide binding pockets of Rv3094c, and F221, a gate between flavin mononucleotide and ethionamide allowing their interaction to complete the sulfoxidation reaction. Our work broadens understanding of both lineage- and drug resistance-associated gene/protein expression perturbations and identifies another player in mycobacterial ethionamide metabolism.
Collapse
|
9
|
Mital S, Christie G, Dikicioglu D. Recombinant expression of insoluble enzymes in Escherichia coli: a systematic review of experimental design and its manufacturing implications. Microb Cell Fact 2021; 20:208. [PMID: 34717620 PMCID: PMC8557517 DOI: 10.1186/s12934-021-01698-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant enzyme expression in Escherichia coli is one of the most popular methods to produce bulk concentrations of protein product. However, this method is often limited by the inadvertent formation of inclusion bodies. Our analysis systematically reviews literature from 2010 to 2021 and details the methods and strategies researchers have utilized for expression of difficult to express (DtE), industrially relevant recombinant enzymes in E. coli expression strains. Our review identifies an absence of a coherent strategy with disparate practices being used to promote solubility. We discuss the potential to approach recombinant expression systematically, with the aid of modern bioinformatics, modelling, and ‘omics’ based systems-level analysis techniques to provide a structured, holistic approach. Our analysis also identifies potential gaps in the methods used to report metadata in publications and the impact on the reproducibility and growth of the research in this field.
Collapse
Affiliation(s)
- Suraj Mital
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, CB3 0AS, UK
| | - Duygu Dikicioglu
- Department of Biochemical Engineering, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
10
|
Ye Q, Zhou J, He Q, Li RT, Yang G, Zhang Y, Wu SJ, Chen Q, Shi JH, Zhang RR, Zhu HM, Qiu HY, Zhang T, Deng YQ, Li XF, Liu JF, Xu P, Yang X, Qin CF. SARS-CoV-2 infection in the mouse olfactory system. Cell Discov 2021; 7:49. [PMID: 34230457 PMCID: PMC8260584 DOI: 10.1038/s41421-021-00290-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2 infection causes a wide spectrum of clinical manifestations in humans, and olfactory dysfunction is one of the most predictive and common symptoms in COVID-19 patients. However, the underlying mechanism by which SARS-CoV-2 infection leads to olfactory disorders remains elusive. Herein, we demonstrate that intranasal inoculation with SARS-CoV-2 induces robust viral replication in the olfactory epithelium (OE), not the olfactory bulb (OB), resulting in transient olfactory dysfunction in humanized ACE2 (hACE2) mice. The sustentacular cells and Bowman’s gland cells in the OE were identified as the major target cells of SARS-CoV-2 before invasion into olfactory sensory neurons (OSNs). Remarkably, SARS-CoV-2 infection triggers massive cell death and immune cell infiltration and directly impairs the uniformity of the OE structure. Combined transcriptomic and quantitative proteomic analyses revealed the induction of antiviral and inflammatory responses, as well as the downregulation of olfactory receptor (OR) genes in the OE from the infected animals. Overall, our mouse model recapitulates olfactory dysfunction in COVID-19 patients and provides critical clues for understanding the physiological basis for extrapulmonary manifestations of COVID-19.
Collapse
Affiliation(s)
- Qing Ye
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qi He
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Rui-Ting Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Guan Yang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Shu-Jia Wu
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Qi Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jia-Hui Shi
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Rong-Rong Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui-Ming Zhu
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Hong-Ying Qiu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Yong-Qiang Deng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiao-Feng Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian-Feng Liu
- Department of Otorhinolaryngology, China-Japan Friendship Hospital, Beijing, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Xiao Yang
- State Key Laboratory of Proteomics, National Center for Protein Science (Beijing), Beijing Institute of Lifeomics, Beijing, China.
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China. .,Research Unit of Discovery and Tracing of Natural Focus Diseases, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
11
|
Zhao M, Hao B, Li H, Cai M, Xie J, Liu H, Tan M, Zhai L, Yu Q. Peptidyl-Lys metalloendopeptidase (Lys-N) purified from dry fruit of Grifola frondosa demonstrates "mirror"digestion property with lysyl endopeptidase (Lys-C). RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8573. [PMID: 31484223 DOI: 10.1002/rcm.8573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/17/2019] [Accepted: 09/01/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE Lys-N, also known as lysine-specific metalloendopeptidase, functions as the "sister" enzyme of lysyl endopeptidase (Lys-C) in proteomic research. Its digestion specificity at the N-terminal lysine residue makes it a very useful tool in proteomics analysis, especially in mass spectrometry (MS)-based de novo sequencing of proteins. METHODS Here we present a complete production process of highly purified Lys-N from dry fruit of Grifola frondosa (maitake mushroom). The purification process includes one step of microfiltration plus one step of UF/DF (ultrafiltration used in tandem with a diafiltration method) recovery and four steps of chromatographic purification. RESULTS The overall yield of the process was approximately 6.7 mg Lys-N protein/kg dry fruit of G. frondosa. The assay data demonstrated that the purified Lys-N exhibited high enzymatic activity and specificity. CONCLUSIONS The novel production process provides for the first time the extraction of Lys-N from dry fruit of G. frondosa. The process is also stable and scalable, and provides an economic way of producing the enzyme in large quantities for MS-based proteomics and other biological studies.
Collapse
Affiliation(s)
- Mingzhi Zhao
- Beijing Institute of Transfusion Medicine, 27 Taiping Road, Beijing, 100850, China
- Prosit Sole Biotechnology Co. Ltd, Beijing, 100085, China
| | - Bingbing Hao
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Honghao Li
- Sartorius Stedim (Shanghai) Trading Co. Ltd, Shanghai, 201203, China
| | - Man Cai
- Prosit Sole Biotechnology Co. Ltd, Beijing, 100085, China
| | - Jingjing Xie
- Prosit Sole Biotechnology Co. Ltd, Beijing, 100085, China
| | - Hongyu Liu
- Prosit Sole Biotechnology Co. Ltd, Beijing, 100085, China
| | - Minjia Tan
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linhui Zhai
- Chemical Proteomics Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qun Yu
- Beijing Institute of Transfusion Medicine, 27 Taiping Road, Beijing, 100850, China
| |
Collapse
|
12
|
Purification and immobilization of α-amylase in one step by gram-positive enhancer matrix (GEM) particles from the soluble protein and the inclusion body. Appl Microbiol Biotechnol 2019; 104:643-652. [PMID: 31788710 DOI: 10.1007/s00253-019-10252-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022]
Abstract
Immobilization of the enzyme benefits the catalytic industry a lot. The gram-positive enhancer matrix (GEM) particles could purify and immobilize the recombinant α-amylase in one step without changing the enzymatic character. The enzyme immobilized by GEM particles exhibited good reusability and storage stability. The denaturants dissolved some of the GEM particles and a part of the GEM particles could bear the denaturants. The GEM particles had strong binding ability to the recombination protein with the AcmA tag even when the denaturants existed. The inclusion body was dissolved by urea and then bound by the GEM particles. The GEM particles binding the recombination protein were separated by centrifugation and resuspended in the renaturation solution. GEM particles were recycled by repeating the boiling procedure used in preparing them. The recombination α-amylase without any tag was obtained by digestion and separated via centrifugation. Altogether, our findings suggest that GEM particles have the potential to function as both immobilization and purification materials to bind the soluble recombinant protein with the AcmA tag and the inclusion body dissolved in the denaturants.
Collapse
|
13
|
Pseudomonas aeruginosa Keratitis: Protease IV and PASP as Corneal Virulence Mediators. Microorganisms 2019; 7:microorganisms7090281. [PMID: 31443433 PMCID: PMC6780138 DOI: 10.3390/microorganisms7090281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/12/2019] [Accepted: 08/15/2019] [Indexed: 11/17/2022] Open
Abstract
Pseudomonas aeruginosa is a leading cause of bacterial keratitis, especially in users of contact lenses. These infections are characterized by extensive degradation of the corneal tissue mediated by Pseudomonas protease activities, including both Pseudomonas protease IV (PIV) and the P. aeruginosa small protease (PASP). The virulence role of PIV was determined by the reduced virulence of a PIV-deficient mutant relative to its parent strain and the mutant after genetic complementation (rescue). Additionally, the non-ocular pathogen Pseudomonas putida acquired corneal virulence when it produced active PIV from a plasmid-borne piv gene. The virulence of PIV is not limited to the mammalian cornea, as evidenced by its destruction of respiratory surfactant proteins and the cytokine interleukin-22 (IL-22), the key inducer of anti-bacterial peptides. Furthermore, PIV contributes to the P. aeruginosa infection of both insects and plants. A possible limitation of PIV is its inefficient digestion of collagens; however, PASP, in addition to cleaving multiple soluble proteins, is able to efficiently cleave collagens. A PASP-deficient mutant lacks the corneal virulence of its parent or rescue strain evidencing its contribution to corneal damage, especially epithelial erosion. Pseudomonas-secreted proteases contribute importantly to infections of the cornea, mammalian lung, insects, and plants.
Collapse
|
14
|
Yang H, Li YC, Zhao MZ, Wu FL, Wang X, Xiao WD, Wang YH, Zhang JL, Wang FQ, Xu F, Zeng WF, Overall CM, He SM, Chi H, Xu P. Precision De Novo Peptide Sequencing Using Mirror Proteases of Ac-LysargiNase and Trypsin for Large-scale Proteomics. Mol Cell Proteomics 2019; 18:773-785. [PMID: 30622160 PMCID: PMC6442358 DOI: 10.1074/mcp.tir118.000918] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 11/20/2018] [Indexed: 11/06/2022] Open
Abstract
De novo peptide sequencing for large-scale proteomics remains challenging because of the lack of full coverage of ion series in tandem mass spectra. We developed a mirror protease of trypsin, acetylated LysargiNase (Ac-LysargiNase), with superior activity and stability. The mirror spectrum pairs derived from the Ac-LysargiNase and trypsin treated samples can generate full b and y ion series, which provide mutual complementarity of each other, and allow us to develop a novel algorithm, pNovoM, for de novo sequencing. Using pNovoM to sequence peptides of purified proteins, the accuracy of the sequence was close to 100%. More importantly, from a large-scale yeast proteome sample digested with trypsin and Ac-LysargiNase individually, 48% of all tandem mass spectra formed mirror spectrum pairs, 97% of which contained full coverage of ion series, resulting in precision de novo sequencing of full-length peptides by pNovoM. This enabled pNovoM to successfully sequence 21,249 peptides from 3,753 proteins and interpreted 44-152% more spectra than pNovo+ and PEAKS at a 5% FDR at the spectrum level. Moreover, the mirror protease strategy had an obvious advantage in sequencing long peptides. We believe that the combination of mirror protease strategy and pNovoM will be an effective approach for precision de novo sequencing on both single proteins and proteome samples.
Collapse
Affiliation(s)
- Hao Yang
- From the ‡Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS; University of Chinese Academy of Sciences; Institute of Computing Technology, CAS, Beijing 100190, China
| | - Yan-Chang Li
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ming-Zhi Zhao
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fei-Lin Wu
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xi Wang
- From the ‡Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS; University of Chinese Academy of Sciences; Institute of Computing Technology, CAS, Beijing 100190, China
| | - Wei-Di Xiao
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yi-Hao Wang
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jun-Ling Zhang
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fu-Qiang Wang
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Feng Xu
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wen-Feng Zeng
- From the ‡Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS; University of Chinese Academy of Sciences; Institute of Computing Technology, CAS, Beijing 100190, China
| | - Christopher M Overall
- ‖Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - Si-Min He
- From the ‡Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS; University of Chinese Academy of Sciences; Institute of Computing Technology, CAS, Beijing 100190, China;.
| | - Hao Chi
- From the ‡Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS; University of Chinese Academy of Sciences; Institute of Computing Technology, CAS, Beijing 100190, China;.
| | - Ping Xu
- §State Key Laboratory of Proteomics; Beijing Proteome Research Center; National Center for Protein Sciences Beijing; Beijing Institute of Lifeomics, Beijing 102206, China;; ¶Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education Wuhan University, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China;; College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
15
|
He C, Sun J, Shi J, Wang Y, Zhao J, Wu S, Chang L, Gao H, Liu F, Lv Z, He F, Zhang Y, Xu P. Digging for Missing Proteins Using Low-Molecular-Weight Protein Enrichment and a “Mirror Protease” Strategy. J Proteome Res 2018; 17:4178-4185. [DOI: 10.1021/acs.jproteome.8b00398] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Cuitong He
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Jinshuai Sun
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Jiahui Shi
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Yihao Wang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Jialing Zhao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Shujia Wu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Huiying Gao
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Fengsong Liu
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Zhitang Lv
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Yao Zhang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing Proteome Research Center, Beijing 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, Hebei 071002, China
- Key Laboratory of Combinational Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, School of Pharmaceutical Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
A first glycoside hydrolase family 50 endo-β-1,3-d-glucanase from Pseudomonas aeruginosa. Enzyme Microb Technol 2018; 108:34-41. [DOI: 10.1016/j.enzmictec.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/26/2017] [Accepted: 09/02/2017] [Indexed: 01/18/2023]
|
17
|
Optimization of culturing conditions of recombined Escherichia coli to produce umami octopeptide-containing protein. Food Chem 2017; 227:78-84. [PMID: 28274461 DOI: 10.1016/j.foodchem.2017.01.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/17/2016] [Accepted: 01/17/2017] [Indexed: 12/24/2022]
Abstract
Using synthesized peptides to verify the taste of natural peptides was probably the leading cause for tasting disputes regarding umami peptides. A novel method was developed to prepare the natural peptide which could be used to verify the taste of umami peptide. A controversial octopeptide was selected and gene engineering was used to structure its Escherichia coli. expressing vector. A response surface method was adopted to optimize the expression conditions of the recombinant protein. The results of SDS-PAGE for the recombinant protein indicated that the recombinant expression system was successfully structured. The fitting results of the response surface experiment showed that the OD600 value was the key factor which influenced the expression of the recombinant protein. The optimal culturing process conditions predicted with the fitting model were an OD600 value of 0.5, an IPTG concentration of 0.6mM, a culturing temperature of 28.75°C and a culturing time of 5h.
Collapse
|
18
|
Zhao M, Xu F, Wu F, Yu D, Su N, Zhang Y, Cheng L, Xu P. iTRAQ-Based Membrane Proteomics Reveals Plasma Membrane Proteins Change During HepaRG Cell Differentiation. J Proteome Res 2016; 15:4245-4257. [PMID: 27790907 DOI: 10.1021/acs.jproteome.6b00305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HepaRG cell, a stabilized bipotent liver progenitor cell line, exhibits hepatocyte functions only after differentiation. However, the mechanism of transition from nondifferentiated to differentiated states, accompanied by proliferation migration and differentiation, remains poorly understood, particularly those proteins residing in the plasma membrane. In this study, the membrane protein expression change of HepaRG cell during differentiation were systematically analyzed using an iTRAQ labeled quantitative membrane proteomics approach. A total of 70 membrane proteins were identified to be differentially expressed among 849 quantified membrane proteins. Function and disease clustering analysis proved that 11 of these proteins are involved in proliferation, migration, and differentiation. Two key factors (MMP-14 and OCLN) were validated by qRT-PCR and Western blot. Blockade of MMP-14 further demonstrated its important function during tumor cell migration. The data sets have been uploaded to ProteomeXchange with the identifier PXD004752.
Collapse
Affiliation(s)
- Mingzhi Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Feng Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Feilin Wu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Life Science College, Southwest Forestry University , Kunming 650224, P. R. China
| | - Debin Yu
- National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University , Changchun 130012, P. R. China
| | - Na Su
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Institute of Microbiology, Chinese Academy of Science , Beijing 100101, P. R. China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology , Beijing 100850, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University , Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, P. R. China.,Anhui Medical University , Hefei 230032, P. R. China
| |
Collapse
|
19
|
Zhao M, Wei W, Cheng L, Zhang Y, Wu F, He F, Xu P. Searching Missing Proteins Based on the Optimization of Membrane Protein Enrichment and Digestion Process. J Proteome Res 2016; 15:4020-4029. [PMID: 27485413 DOI: 10.1021/acs.jproteome.6b00389] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A membrane protein enrichment method composed of ultracentrifugation and detergent-based extraction was first developed based on MCF7 cell line. Then, in-solution digestion with detergents and eFASP (enhanced filter-aided sample preparation) with detergents were compared with the time-consuming in-gel digestion method. Among the in-solution digestion strategies, the eFASP combined with RapiGest identified 1125 membrane proteins. Similarly, the eFASP combined with sodium deoxycholate identified 1069 membrane proteins; however, the in-gel digestion characterized 1091 membrane proteins. Totally, with the five digestion methods, 1390 membrane proteins were identified with ≥1 unique peptides, among which 1345 membrane proteins contain unique peptides ≥2. This is the biggest membrane protein data set for MCF7 cell line and even breast cancer tissue samples. Interestingly, we identified 13 unique peptides belonging to 8 missing proteins (MPs). Finally, eight unique peptides were validated by synthesized peptides. Two proteins were confirmed as MPs, and another two proteins were candidate detections.
Collapse
Affiliation(s)
- Mingzhi Zhao
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Wei Wei
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Long Cheng
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology , 27 Tai-Ping Lu Road, Beijing 100850, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Institute of Microbiology, Chinese Academy of Science , Beijing 100101, China
| | - Feilin Wu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Life Science College, Southwest Forestry University , Kunming 650224, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, National Engineering Research Center for Protein Drugs, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Radiation Medicine , Beijing 102206, P. R. China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences , Wuhan 430071, P. R. China.,Anhui Medical University , Hefei 230032, Anhui, P. R. China
| |
Collapse
|