1
|
Development of a Methodology to Adapt an Equilibrium Buffer/Wash Applied to the Purification of hGPN2 Protein Expressed in Escherichia coli Using an IMAC Immobilized Metal Affinity Chromatography System. SEPARATIONS 2022. [DOI: 10.3390/separations9070164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Protein purification is a complex and non-standardized process; the fact that proteins have different structural types making it difficult to create a standard methodology to obtain them in a pure, soluble, and homogeneous form. The present study shows the selective development of a buffer suitable for proteins of interest that allows high concentrations of hGPN2 protein to be obtained with low polydispersion and high homogeneity and purity. By taking the different reagents used in the construction of different buffers as a basis and performing purifications using different additives in different concentrations to determine the optimal amounts, the developed process helps to minimize the bonds, maintain solubility, release the proteins present in inclusion bodies, and provide an adequate environment for obtaining high concentrations of pure protein. GPN proteins are of unknown function, have not been purified in high concentrations, and have been found as part of the RNA polymerase assembly; if they are not expressed, the cell dies, and overexpression of certain GPN proteins has been linked to decreased survival in patients with invasive ductal carcinoma breast cancer types ER+ and HER2+. The results of the present study show that the use of the buffer developed for recombinant hGPN2 protein expressed in Escherichia coli could be manipulated in order to isolate the protein in a totally pure form and without the use of protease inhibitor tablets. The resulting homogeneity and low polydispersion was corroborated by studies carried out using dynamic dispersion analysis. Thanks to these properties, it can be used for crystallography or structural genomics studies.
Collapse
|
2
|
Zhou X, Shafique K, Sajid M, Ali Q, Khalili E, Javed MA, Haider MS, Zhou G, Zhu G. Era-like GTP protein gene expression in rice. BRAZ J BIOL 2021; 82:e250700. [PMID: 34259718 DOI: 10.1590/1519-6984.250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/19/2021] [Indexed: 11/22/2022] Open
Abstract
The mutations are genetic changes in the genome sequences and have a significant role in biotechnology, genetics, and molecular biology even to find out the genome sequences of a cell DNA along with the viral RNA sequencing. The mutations are the alterations in DNA that may be natural or spontaneous and induced due to biochemical reactions or radiations which damage cell DNA. There is another cause of mutations which is known as transposons or jumping genes which can change their position in the genome during meiosis or DNA replication. The transposable elements can induce by self in the genome due to cellular and molecular mechanisms including hypermutation which caused the localization of transposable elements to move within the genome. The use of induced mutations for studying the mutagenesis in crop plants is very common as well as a promising method for screening crop plants with new and enhanced traits for the improvement of yield and production. The utilization of insertional mutations through transposons or jumping genes usually generates stable mutant alleles which are mostly tagged for the presence or absence of jumping genes or transposable elements. The transposable elements may be used for the identification of mutated genes in crop plants and even for the stable insertion of transposable elements in mutated crop plants. The guanine nucleotide-binding (GTP) proteins have an important role in inducing tolerance in rice plants to combat abiotic stress conditions.
Collapse
Affiliation(s)
- X Zhou
- Linyi University, College of Life Science, Linyi, Shandong, China
| | - K Shafique
- Government Sadiq College Women University, Department of Botany, Bahawalpur, Pakistan
| | - M Sajid
- University of Okara, Faculty of Life Sciences, Department of Biotechnology, Okara, Pakistan
| | - Q Ali
- University of Lahore, Institute of Molecular Biology and Biotechnology, Lahore, Pakistan
| | - E Khalili
- Tarbiat Modarres University, Faculty of Science, Department of Plant Science, Tehran, Iran
| | - M A Javed
- University of the Punjab Lahore, Department of Plant Breeding and Genetics, Lahore, Pakistan
| | - M S Haider
- University of the Punjab Lahore, Department of Plant Pathology, Lahore, Pakistan
| | - G Zhou
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| | - G Zhu
- Yangzhou University, The Ministry of Education of China, Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Cristóbal-Mondragón GR, Lara-Chacón B, Santiago Á, De-la-Rosa V, González-González R, Muñiz-Luna JA, Ladrón-de-Guevara E, Romero-Romero S, Rangel-Yescas GE, Fernández Velasco DA, Islas LD, Pastor N, Sánchez-Olea R, Calera MR. FRET-based analysis and molecular modeling of the human GPN-loop GTPases 1 and 3 heterodimer unveils a dominant-negative protein complex. FEBS J 2019; 286:4797-4818. [PMID: 31298811 DOI: 10.1111/febs.14996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 05/08/2019] [Accepted: 07/09/2019] [Indexed: 01/09/2023]
Abstract
GPN-loop GTPases 1 and 3 are required for RNA polymerase II (RNAPII) nuclear import. Gpn1 and Gpn3 display some sequence similarity, physically associate, and their protein expression levels are mutually dependent in human cells. We performed here Fluorescence Resonance Energy Transfer (FRET), molecular modeling, and cell biology experiments to understand, and eventually disrupt, human Gpn1-Gpn3 interaction in live HEK293-AD cells. Transiently expressed EYFP-Gpn1 and Gpn3-CFP generated a strong FRET signal, indicative of a very close proximity, in the cytoplasm of HEK293-AD cells. Molecular modeling of the human Gpn1-Gpn3 heterodimer based on the crystallographic structure of Npa3, the Saccharomyces cerevisiae Gpn1 ortholog, revealed that human Gpn1 and Gpn3 associate through a large interaction surface formed by internal α-helix 7, insertion 2, and the GPN-loop from each protein. In site-directed mutagenesis experiments of interface residues, we identified the W132D and M227D EYFP-Gpn1 mutants as defective to produce a FRET signal when coexpressed with Gpn3-CFP. Simultaneous but not individual expression of Gpn1 and Gpn3, with either or both proteins fused to EYFP, retained RNAPII in the cytoplasm and markedly inhibited global transcription in HEK293-AD cells. Interestingly, the W132D and M227D Gpn1 mutants that showed an impaired ability to interact with Gpn3 by FRET were also unable to delocalize RNAPII in this assay, indicating that an intact Gpn1-Gpn3 interaction is required to display the dominant-negative effect on endogenous Gpn1/Gpn3 function we described here. Altogether, our results suggest that a Gpn1-Gpn3 strong interaction is critical for their cellular function.
Collapse
Affiliation(s)
| | - Bárbara Lara-Chacón
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ángel Santiago
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Víctor De-la-Rosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | | | - Julio A Muñiz-Luna
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Ernesto Ladrón-de-Guevara
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Sergio Romero-Romero
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Gisela E Rangel-Yescas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Daniel Alejandro Fernández Velasco
- Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, CDMX, México
| | - Nina Pastor
- Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor, México
| | - Roberto Sánchez-Olea
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| | - Mónica R Calera
- Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, México
| |
Collapse
|