3
|
Junco JA, Rodríguez R, Fuentes F, Baladrón I, Castro MD, Calzada L, Valenzuela C, Bover E, Pimentel E, Basulto R, Arteaga N, Cid-Arregui A, Sariol F, González L, Porres-Fong L, Medina M, Rodríguez A, Garay AH, Reyes O, López M, de Quesada L, Alvarez A, Martínez C, Marrero M, Molero G, Guerra A, Rosales P, Capote C, Acosta S, Vela I, Arzuaga L, Campal A, Ruiz E, Rubio E, Cedeño P, Sánchez MC, Cardoso P, Morán R, Fernández Y, Campos M, Touduri H, Bacardi D, Feria I, Ramirez A, Cosme K, Saura PL, Quintana M, Muzio V, Bringas R, Ayala M, Mendoza M, Fernández LE, Carr A, Herrera L, Guillén G. Safety and Therapeutic Profile of a GnRH-Based Vaccine Candidate Directed to Prostate Cancer. A 10-Year Follow-Up of Patients Vaccinated With Heberprovac. Front Oncol 2019; 9:49. [PMID: 30859088 PMCID: PMC6397853 DOI: 10.3389/fonc.2019.00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 01/17/2019] [Indexed: 12/25/2022] Open
Abstract
Heberprovac is a GnRH based vaccine candidate containing 2.4 mg of the GnRHm1-TT peptide as the main active principle; 245 μg of the very small size proteoliposomes adjuvant (VSSP); and 350 μL of Montanide ISA 51 VG oil adjuvant. The aim of this study was to assess the safety and tolerance of the Heberprovac in advanced prostate cancer patients as well as its capacity to induce anti-GnRH antibodies, the subsequent effects on serum levels of testosterone and PSA and the patient overall survival. The study included eight patients with histologically-proven advanced prostate cancer with indication for hormonal therapy, who received seven intramuscular immunizations with Heberprovac within 18 weeks. Anti-GnRH antibody titers, testosterone and PSA levels, as well as clinical parameters were recorded and evaluated. The vaccine was well tolerated. Significant reductions in serum levels of testosterone and PSA were seen after four immunizations. Castrate levels of testosterone were observed in all patients at the end of the immunization schedule, which remained at the lowest level for at least 20 months. In a 10-year follow-up three out of six patients who completed the entire trial survived. In contrast only one out eight patients survived in the same period in a matched randomly selected group receiving standard anti-hormonal treatment. Heberprovac vaccination showed a good security profile, as well as immunological, biochemical and, most importantly, clinical benefit. The vaccinated group displayed survival advantage compared with the reference group that received standard treatment. These results warrant further clinical trials with Heberprovac involving a larger cohort.
Collapse
Affiliation(s)
- Jesús A. Junco
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Ranfis Rodríguez
- Uro-oncology Department of National Institute of Oncology and Radiobiology (INOR), Havana, Cuba
| | - Franklin Fuentes
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Idania Baladrón
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Maria D. Castro
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Lesvia Calzada
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | | | - Eddy Bover
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | | | - Roberto Basulto
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Niurka Arteaga
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | | | | | | | | | - María Medina
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Ayni Rodríguez
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - A. Hilda Garay
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Osvaldo Reyes
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Matilde López
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | | | | | | | - Alfredo Guerra
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Pedro Rosales
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Carlos Capote
- Amalia Simoni Clinical-Surgical Hospital, Camagüey, Cuba
| | - Sahily Acosta
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Idania Vela
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Lina Arzuaga
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Ana Campal
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Erlán Ruiz
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Elier Rubio
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Pável Cedeño
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - María Carmen Sánchez
- Clinical Laboratory of the Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Pedro Cardoso
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | - Rolando Morán
- Center for Genetic Engineering and Biotechnology of Camaguey, Camagüey, Cuba
| | - Yairis Fernández
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Magalys Campos
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Henio Touduri
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Dania Bacardi
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Indalecio Feria
- Clinical Trials Department of Oncologic Hospital Marie Curie of Camaguey, Marie Curie, Camagüey, Cuba
| | - Amilcar Ramirez
- Department of Pharmacology of Camaguey Medical University, Camagüey, Cuba
| | - Karelia Cosme
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | | | | | - Verena Muzio
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ricardo Bringas
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Marta Ayala
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Mario Mendoza
- Oncologic Hospital of Camaguey, Marie Curie, Camagüey, Cuba
| | | | | | - Luis Herrera
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
- BioCubafarma, Havana, Cuba
| | - Gerardo Guillén
- Center for Genetic Engineering and Biotechnology, Havana, Cuba
| |
Collapse
|
4
|
Garg H, Hada RS, Gupta JC, Talwar GP, Dubey S. Combination immunotherapy with Survivin and luteinizing hormone-releasing hormone fusion protein in murine breast cancer model. World J Clin Oncol 2018; 9:188-199. [PMID: 30622927 PMCID: PMC6314864 DOI: 10.5306/wjco.v9.i8.188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/24/2018] [Accepted: 11/04/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the therapeutic potential of two recombinant proteins, Survivin and luteinizing hormone-releasing hormone (LHRH) fusion protein [LHRH(6leu)-LTB] for immunotherapy of breast cancer.
METHODS Murine 4T-1 breast cancer model was used to evaluate the efficacy of recombinant proteins in vivo. Twenty four Balb/c mice were divided into 4 groups of 6 mice each. Recombinant Survivin and LHRH fusion protein, alone or in combination, were administered along with immunomodulator Mycobacterium indicus pranii (MIP) in Balb/c mice. Unimmunized or control group mice were administered with phosphate buffer saline. Each group was then challenged with syngeneic 4T-1 cells to induce the growth of breast tumor. Tumor growth was monitored to evaluate the efficacy of immune-response in preventing the growth of cancer cells.
RESULTS Preventive immunization with 20 µg recombinant Survivin and MIP was effective in suppressing growth of 4T-1 mouse model of breast cancer (P = 0.04) but 50 µg dose was ineffective in suppressing tumor growth. However, combination of Survivin and LHRH fusion protein was more effective in suppressing tumor growth (P = 0.02) as well as metastasis in vivo in comparison to LHRH fusion protein as vaccine antigen alone.
CONCLUSION Recombinant Survivin and MIP suppress tumor growth significantly. Combining LHRH fusion protein with Survivin and MIP enhances tumor suppressive effects marginally which provides evidence for recombinant Survivin and LHRH fusion protein as candidates for translating the combination cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Himani Garg
- Talwar Research Foundation, Neb Sarai, New Delhi 110068, India
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| | | | - Jagdish C Gupta
- Talwar Research Foundation, Neb Sarai, New Delhi 110068, India
| | - G P Talwar
- Talwar Research Foundation, Neb Sarai, New Delhi 110068, India
| | - Shweta Dubey
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Noida 201303, Uttar Pradesh, India
| |
Collapse
|