1
|
Cotabarren J, Ozón B, Claver S, Geier F, Rossotti M, Garcia-Pardo J, Obregón WD. A Multifunctional Trypsin Protease Inhibitor from Yellow Bell Pepper Seeds: Uncovering Its Dual Antifungal and Hypoglycemic Properties. Pharmaceutics 2023; 15:pharmaceutics15030781. [PMID: 36986642 PMCID: PMC10054557 DOI: 10.3390/pharmaceutics15030781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
Fungal infections are a growing public health concern worldwide and the emergence of antifungal resistance has limited the number of therapeutic options. Therefore, developing novel strategies for identifying and developing new antifungal compounds is an active area of research in the pharmaceutical industry. In this study, we purified and characterized a trypsin protease inhibitor obtained from Yellow Bell Pepper (Capsicum annuum L.) seeds. The inhibitor not only showed potent and specific activity against the pathogenic fungus Candida albicans, but was also found to be non-toxic against human cells. Furthermore, this inhibitor is unique in that it also inhibits α-1,4-glucosidase, positioning it as one of the first plant-derived protease inhibitors with dual biological activity. This exciting discovery opens new avenues for the development of this inhibitor as a promising antifungal agent and highlights the potential of plant-derived protease inhibitors as a rich source for the discovery of novel multifunctional bioactive molecules.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Brenda Ozón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Santiago Claver
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Florencia Geier
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Martina Rossotti
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
| | - Javier Garcia-Pardo
- Departament de Bioquimica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, 47 y 115 s/N, La Plata B1900AVW, Buenos Aires, Argentina
- Correspondence: (J.C.); (J.G.-P.); (W.D.O.); Tel.: +54-221-423-5333 (ext. 57) (J.C. & W.D.O.); +34-93-586-8936 (J.G.-P.)
| |
Collapse
|
2
|
Pandey A, Yadav R, Sanyal I. Evaluating the pesticidal impact of plant protease inhibitors: lethal weaponry in the co-evolutionary battle. PEST MANAGEMENT SCIENCE 2022; 78:855-868. [PMID: 34570437 DOI: 10.1002/ps.6659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the arsenal of plant defense, protease inhibitors (PIs) are well-designed defensive products to counter field pests. PIs are produced in plant tissues by means of 'stable defense metabolite' and triggered on demand as the perception of the signal and well established as a part of plant active defense. PIs have been utilized for approximately four decades, initially as a gene-alone approach that was later replaced by multiple gene pyramiding/gene stacking due to insect adaptability towards the PI alone. By considering the adaptive responses of the pest to the single insecticidal gene, the concept of gene pyramiding gained continuous appreciation for the development of transgenic crops to deal with co-evolving pests. Gene pyramiding approaches are executed to bypass the insect's adaptive responses against PIs. Stacking PIs with additional insecticidal proteins, plastid engineering, recombinant proteinase inhibitors, RNAi-based methods and CRISPR/Cas9-mediated genome editing are the advanced tools and methods for next-generation pest management. Undoubtedly, the domain associated with the mechanism of PIs in the course of plant-pest interactions will occupy a central role for the advancement of more efficient and sustainable pest control strategies. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ankesh Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Reena Yadav
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Biotechnology, Kumaun University, Nainital, India
| | - Indraneel Sanyal
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Identification and characterization of a wolfberry carboxypeptidase inhibitor from Lycium barbarum. Food Chem 2021; 351:129338. [PMID: 33647700 DOI: 10.1016/j.foodchem.2021.129338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 01/22/2021] [Accepted: 02/06/2021] [Indexed: 01/13/2023]
Abstract
Hyperstable cysteine-rich peptides (CRPs) represent an underexplored superfamily of bioactives in functional foods. An example is wolfberry of the Lycium barbarum family. Previously, we discovered a CRP, designated α-lybatide, from L. barbarum bark. Herein, we report the discovery of β-lybatide, a novel carboxypeptidase inhibitor belonging to a different CRP family from the wolfberry plant. Proteomic and transcriptomic analyses showed that β-lybatide contains 36 amino acids with six cysteine residues. NMR spectroscopy revealed that β-lybatide displays a knottin-like structure that renders it highly resistant to thermal, chemical and enzymatic degradation, conditions important for keeping its structural integrity in gastrointestinal tract. Biochemical assays showed that β-lybatide is a potent carboxypeptidase inhibitor which could contribute to the wolfberry biological activities. Bioinformatics analysis revealed an additional 49 β-lybatide-like plant carboxypeptidase inhibitors. Together, our results show that β-lybatide is the first and the smallest plant-derived hyperstable carboxypeptidase inhibitor discovered from a functional food.
Collapse
|
4
|
Kollakalnaduvil Raghavan RM, Ali Pannippara M, Kesav S, Mathew A, G Bhat S, Hatha Aa M, Kk E. MFAP9: Characterization of an extracellular thermostable antibacterial peptide from marine fungus with biofilm eradication potential. J Pharm Biomed Anal 2020; 194:113808. [PMID: 33303270 DOI: 10.1016/j.jpba.2020.113808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
An extracellular thermostable antibacterial peptide designated as MFAP9 was purified from marine Aspergillus fumigatus BTMF9 by ammonium sulfate precipitation followed by ion exchange chromatography on a DEAE-sepharose column. The molecular weight of MFAP9 was found to be∼3 kDa in SDS-PAGE gel corresponding a single intensity peak in MALDI-TOF. The distinct peak with a retention time of 32.5 min appeared in high performance liquid chromatography (HPLC), further confirming the purity. Isoelectric focusing, two-dimensional gel electrophoresis and peptide mass fingerprinting were performed for the characterization of MFAP9. Functional analysis of purified MFAP9 exhibited strong antibacterial activity against Bacillus circulans (NCIM 2107) with MIC and MBC values of 0.525 μg/mL and 4.2 μg/mL, respectively. The in vitro antibiofilm effect of MFAP9 was analyzed against bacteria which have strong biofilm forming potential. The antibiofilm effect of MFAP9 treatment on Bacillus pumilus was examined using scanning electron microscopy. MFAP9 was found to be active at high temperatures and a wide range of pH (28). In addition, it showed varied sensitivity towards proteolytic enzymes. The peptide was nontoxic to human RBCs at higher concentrations. These results indicate that MFAP9 is an antibacterial peptide, suitable for the development of novel anti-infective agent with strong antibiofilm potential.
Collapse
Affiliation(s)
| | - Manzur Ali Pannippara
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022, Kerala, India; Department of Biotechnology, MES College Marampally, Aluva, 683 107, Kerala, India.
| | - Sapna Kesav
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022, Kerala, India; Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| | - Abraham Mathew
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022, Kerala, India; P.G. and Research Department of Botany, St. Peter's College, Kolenchery, 682311, Kerala, India
| | - Sarita G Bhat
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682 022, Kerala, India
| | - Mohamed Hatha Aa
- Department of Marine Biology, Microbiology and Biochemistry, Cochin University of Science and Technology, Cochin, 682 016, Kerala, India
| | - Elyas Kk
- Department of Biotechnology, Calicut University, Malappuram, 673 635, Kerala, India
| |
Collapse
|
5
|
Cotabarren J, Broitman DJ, Quiroga E, Obregón WD. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int J Biol Macromol 2020; 148:869-879. [DOI: 10.1016/j.ijbiomac.2020.01.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
6
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
7
|
Cotabarren J, Tellechea ME, Tanco SM, Lorenzo J, Garcia-Pardo J, Avilés FX, Obregón WD. Biochemical and MALDI-TOF Mass Spectrometric Characterization of a Novel Native and Recombinant Cystine Knot Miniprotein from Solanum tuberosum subsp. andigenum cv. Churqueña. Int J Mol Sci 2018; 19:ijms19030678. [PMID: 29495576 PMCID: PMC5877539 DOI: 10.3390/ijms19030678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/03/2023] Open
Abstract
Cystine-knot miniproteins (CKMPs) are an intriguing group of cysteine-rich molecules that combine the characteristics of proteins and peptides. Typically, CKMPs are fewer than 50 residues in length and share a characteristic knotted scaffold characterized by the presence of three intramolecular disulfide bonds that form the singular knotted structure. The knot scaffold confers on these proteins remarkable chemical, thermal, and proteolytic stability. Recently, CKMPs have emerged as a novel class of natural molecules with interesting pharmacological properties. In the present work, a novel cystine-knot metallocarboxypeptidase inhibitor (chuPCI) was isolated from tubers of Solanum tuberosum, subsp. andigenum cv. Churqueña. Our results demonstrated that chuPCI is a member of the A/B-type family of metallocarboxypeptidases inhibitors. chuPCI was expressed and characterized by a combination of biochemical and mass spectrometric techniques. Direct comparison of the MALDI-TOF mass spectra for the native and recombinant molecules allowed us to confirm the presence of four different forms of chuPCI in the tubers. The majority of such forms have a molecular weight of 4309 Da and contain a cyclized Gln in the N-terminus. The other three forms are derived from N-terminal and/or C-terminal proteolytic cleavages. Taken together, our results contribute to increase the current repertoire of natural CKMPs.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900AVW, Argentina.
| | - Mariana Edith Tellechea
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900AVW, Argentina.
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Sebastián Martín Tanco
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Javier Garcia-Pardo
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 s/N, La Plata B1900AVW, Argentina.
| |
Collapse
|