1
|
Ren X, Tsuji H, Uchino T, Kono I, Isoshima T, Okamoto A, Nagaoka N, Ozaki T, Matsukawa A, Miyatake H, Ito Y. An osteoinductive surface by adhesive bone morphogenetic protein-2 prepared using the bioorthogonal approach for tight binding of titanium with bone. J Mater Chem B 2024; 12:3006-3014. [PMID: 38451210 DOI: 10.1039/d3tb02838k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Inorganic biomaterials are used in various orthopedic and dental implants. Nevertheless, they cause clinical issues such as loosening of implants and patient morbidity. Therefore, inspired by mussel adhesive proteins, we aimed to design an adhesive and dimer-forming highly active bone morphogenetic protein-2 (BMP-2) using bioorthogonal chemistry, in which recombinant DNA technology was combined with enzymatic modifications, to achieve long-term osseointegration with titanium. The prepared BMP-2 exhibited substantially higher binding activity than wild-type BMP-2, while the adhered BMP-2 was more active than soluble BMP-2. Therefore, the adhesive BMP-2 was immobilized onto titanium wires and screws and implanted into rat bones, and long-term osteogenesis was evaluated. Adhesive BMP-2 promoted the mechanical binding of titanium to bones, enabling efficient bone regeneration and effective stabilization of implants. Thus, such adhesive biosignaling proteins can be used in regenerative medicine.
Collapse
Affiliation(s)
- Xueli Ren
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hironori Tsuji
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Takahiko Uchino
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Izumi Kono
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Isoshima
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Akimitsu Okamoto
- Department of Advanced Interdisciplinary Studies, Graduate School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral & Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Okayama 700-8558, Japan
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Shams R, Ito Y, Miyatake H. Evaluation of the Binding Kinetics of RHEB with mTORC1 by In-Cell and In Vitro Assays. Int J Mol Sci 2021; 22:ijms22168766. [PMID: 34445471 PMCID: PMC8395731 DOI: 10.3390/ijms22168766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 11/16/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) is activated by the small G-protein, Ras homolog enriched in brain (RHEB–GTPase). On lysosome, RHEB activates mTORC1 by binding the domains of N-heat, M-heat, and the focal adhesion targeting (FAT) domain, which allosterically regulates ATP binding in the active site for further phosphorylation. The crucial role of RHEB in regulating growth and survival through mTORC1 makes it a targetable site for anti-cancer therapeutics. However, the binding kinetics of RHEB to mTORC1 is still unknown at the molecular level. Therefore, we studied the kinetics by in vitro and in-cell protein–protein interaction (PPI) assays. To this end, we used the split-luciferase system (NanoBiT®) for in-cell studies and prepared proteins for the in vitro measurements. Consequently, we demonstrated that RHEB binds to the whole mTOR both in the presence or absence of GTPγS, with five-fold weaker affinity in the presence of GTPγS. In addition, RHEB bound to the truncated mTOR fragments of N-heat domain (∆N, aa 60–167) or M-heat domain (∆M, aa 967–1023) with the same affinity in the absence of GTP. The reconstructed binding site of RHEB, ∆N-FAT-M, however, bound to RHEB with the same affinity as ∆N-M, indicating that the FAT domain (∆FAT, aa 1240–1360) is dispensable for RHEB binding. Furthermore, RHEB bound to the truncated kinase domain (∆ATP, aa 2148–2300) with higher affinity than to ∆N-FAT-M. In conclusion, RHEB engages two different binding sites of mTOR, ∆N-FAT-M and ∆ATP, with higher affinity for ∆ATP, which likely regulates the kinase activity of mTOR through multiple different biding modes.
Collapse
Affiliation(s)
- Raef Shams
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan; (R.S.); (Y.I.)
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City 338-8570, Saitama, Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, RIKEN, Wako 351-0198, Saitama, Japan; (R.S.); (Y.I.)
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Saitama, Japan
| | - Hideyuki Miyatake
- Department of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City 338-8570, Saitama, Japan
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Saitama, Japan
- Correspondence: ; Tel.: +81-48-467-4979
| |
Collapse
|
3
|
Zhao Z, Zhou Y, Wang R, Xie F, Zhai Z. Expression, purification, and characterization of phospholipase B1 from Candida albicans in Escherichia coli. 3 Biotech 2020; 10:538. [PMID: 33224707 DOI: 10.1007/s13205-020-02515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/27/2020] [Indexed: 10/23/2022] Open
Abstract
Candida albicans is an important fungal pathogen that causes a wide variety of human infections, ranging from mucocutaneous infections to life-threatening systemic infections. Phospholipase B1 (PLB1) has been reported to be directly responsible for C. albicans pathogenicity and is likely to be involved in the early steps of host invasion. Therefore, PLB1 could be a potential marker for diagnosis of C. albicans infection. In this study, PLB1 was expressed using an Escherichia coli expression system. Recombinant PLB1 is found in inclusion bodies and constitutes up to 38.4% of total insoluble protein. After refolding in a GSH/GSSG redox system, GST-tagged PLB1 was purified by GST-sepharose 4B affinity chromatography and then cleaved with thrombin to remove the GST-tag. The recombinant PLB1 was further purified by anion-exchange chromatography and reverse phase HPLC. The final yield of purified PLB1 was approximately 15.6 mg from 100 mL of bacterial cell culture, and its concentration was 784 μg/μL. The recombinant PLB1 could form a white precipitation zone on egg yolk agar plate, suggesting its phospholipase activity. Moreover, the maximum activity of PLB1 was 68 IU/mg at pH 6.0, 37 °C. Therefore, recombinant PLB1 has potential application in structural analytical studies, or diagnosis of C. albicans infection.
Collapse
|
4
|
Enhancement of Binding Affinity of Folate to Its Receptor by Peptide Conjugation. Int J Mol Sci 2019; 20:ijms20092152. [PMID: 31052315 PMCID: PMC6539678 DOI: 10.3390/ijms20092152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
(1) Background: The folate receptor (FR) is a target for cancer treatment and detection. Expression of the FR is restricted in normal cells but overexpressed in many types of tumors. Folate was conjugated with peptides for enhancing binding affinity to the FR. (2) Materials and Methods: For conjugation, folate was coupled with propargyl or dibenzocyclooctyne, and 4-azidophenylalanine was introduced in peptides for “click” reactions. We measured binding kinetics including the rate constants of association (ka) and dissociation (kd) of folate-peptide conjugates with purified FR by biolayer interferometry. After optimization of the conditions for the click reaction, we successfully conjugated folate with designed peptides. (3) Results: The binding affinity, indicated by the equilibrium dissociation constant (KD), of folate toward the FR was enhanced by peptide conjugation. The enhanced FR binding affinity by peptide conjugation is a result of an increase in the number of interaction sites. (4) Conclusion: Such peptide-ligand conjugates will be important in the design of ligands with higher affinity. These high affinity ligands can be useful for targeted drug delivery system.
Collapse
|