1
|
Stefanek S, Typek R, Dybowski M, Wianowska D, Jaszek M, Janusz G. Novel Basidiomycetous Alcohol Oxidase from Cerrena unicolor-Characterisation, Kinetics, and Proteolytic Modifications. Int J Mol Sci 2024; 25:11890. [PMID: 39595961 PMCID: PMC11593814 DOI: 10.3390/ijms252211890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Intracellular alcohol oxidase (AOX) was isolated from the basidiomycetous white rot fungus Cerrena unicolor FCL139. The enzyme was semi-purified (13-fold) using two-step chromatography with 30% activity recovery. The identity of the protein was confirmed by LC-MS/MS analysis, and its MW (72 kDa) and pI (6.18) were also determined. The kinetics parameters of the AOX reaction towards various substrates were analysed, which proved that, in addition to methanol (4.36 ± 0.27% of the oxidised substrate), AOX most potently oxidises aromatic alcohols, such as 4-hydroxybenzyl alcohol (14.0 ± 0.8%), benzyl alcohol (4.2 ± 0.3%), anisyl alcohol (7.6 ± 0.4%), and veratryl alcohol (5.0 ± 0.3%). Moreover, the influence of selected commercially available proteases on the biocatalytic properties of AOX from C. unicolor was studied. It was proved that the digested enzyme lost its catalytic potential properties except when incubated with pepsin, which significantly boosted its activity up to 123%.
Collapse
Affiliation(s)
- Sylwia Stefanek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Rafał Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (R.T.); (M.D.); (D.W.)
| | - Michał Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (R.T.); (M.D.); (D.W.)
| | - Dorota Wianowska
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Pl. Maria Curie-Skłodowska 3, 20-031 Lublin, Poland; (R.T.); (M.D.); (D.W.)
| | - Magdalena Jaszek
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| | - Grzegorz Janusz
- Department of Biochemistry and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland;
| |
Collapse
|
2
|
Hwang IY, Kalyuzhnaya MG, Lee EY. Quantitative assessment of methane bioconversion based on kinetics and bioenergetics. BIORESOURCE TECHNOLOGY 2024; 410:131269. [PMID: 39163949 DOI: 10.1016/j.biortech.2024.131269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
The biological conversion of methane under ambient conditions can be performed by methanotrophs that utilize methane as both a sole source of energy and a carbon source. However, compared to the established microbial chassis used for general fermentation with sugar as a feedstock, the productivity of methanotrophs is low. The fundamental knowledge of their metabolic or cellular bottlenecks is limited. In this review, the industrial-scale potential of methane bioconversion was evaluated. In particular, the enzyme kinetics associated with the oxidation and assimilation of methane were investigated to evaluate the potential of methane fermentation. The kinetics of enzymes involved in methane metabolism were compared with those used in the metabolic processes of traditional fermentation (glycolysis). Through this analysis, the current limitations of methane metabolism were identified. Methods for increasing the efficiency of methane bioconversion and directions for the industrial application of methane-based fermentation were discussed.
Collapse
Affiliation(s)
- In Yeub Hwang
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea
| | - M G Kalyuzhnaya
- Department of Biology, San Diego State University, San Diego CA92182, USA.
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), College of Engineering, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
3
|
Li Q, Wang H, Zhang W, Wang W, Ren X, Wu M, Shi G. Structure-Guided Evolution Modulate Alcohol Oxidase to Improve Ethanol Oxidation Performance. Appl Biochem Biotechnol 2024; 196:1948-1965. [PMID: 37453026 DOI: 10.1007/s12010-023-04626-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
A high ethanol usage of alcohol oxidase (AOX) was required in industry. In this study, a "expand substrate pocket" strategy achieved a high activity AOX from Hansenula polymorpha (H. polymorpha) by Phe to Val residue (F/V) site-directed mutation to enlarge ethanol channel. Although H. Polymorpha AOX (HpAOX) possessed respectively 71.3% and 76.1% similarity with AOX (PpAOX) from Pichia pastoris (P. pastoris) in DNA and protein sequences, their active site structures including catalytic site and substrate channel were similar according to computer-aided analysis. After 3D structure analysis, Phe99 residue of their substrate channels was the most important residue to impact enzyme activity because of its large aromatic side chains. F99V mutation of HpAOX (HpAOXF99V) was designed and executed based on the enzyme catalytic mechanism and molecular computation in order to allow more larger size ethanol into active site. The highest enzyme activity of the fourth strains of HpAOXF99V mutant strain exhibited 12.06-folds increase than that of the host GS115 strain. Furthermore, kinetic studies indicated that the HpAOXF99V significantly promoted catalytic efficiency of ethanol than HpAOX, including Km, Vmax, kcat and kcat/Km. We also provided a new insight that the cofactor FAD irritated both active AOX octamer biosynthesis production and enzyme-catalysed ability due to help enzyme assembly and redox potential.
Collapse
Affiliation(s)
- Qian Li
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haiou Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China.
| | - Wenxiao Zhang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wenxuan Wang
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyu Ren
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengyao Wu
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guoqing Shi
- School of Chemistry and Biological Engineering, Department of Biological Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
4
|
Wagner N, Wen L, Frazão CJR, Walther T. Next-generation feedstocks methanol and ethylene glycol and their potential in industrial biotechnology. Biotechnol Adv 2023; 69:108276. [PMID: 37918546 DOI: 10.1016/j.biotechadv.2023.108276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
Microbial fermentation processes are expected to play an important role in reducing dependence on fossil-based raw materials for the production of everyday chemicals. In order to meet the growing demand for biotechnological products in the future, alternative carbon sources that do not compete with human nutrition must be exploited. The chemical conversion of the industrially emitted greenhouse gas CO2 into microbially utilizable platform chemicals such as methanol represents a sustainable strategy for the utilization of an abundant carbon source and has attracted enormous scientific interest in recent years. A relatively new approach is the microbial synthesis of products from the C2-compound ethylene glycol, which can also be synthesized from CO2 and non-edible biomass and, in addition, can be recovered from plastic waste. Here we summarize the main chemical routes for the synthesis of methanol and ethylene glycol from sustainable resources and give an overview of recent metabolic engineering work for establishing natural and synthetic microbial assimilation pathways. The different metabolic routes for C1 and C2 alcohol-dependent bioconversions were compared in terms of their theoretical maximum yields and their oxygen requirements for a wide range of value-added products. Assessment of the process engineering challenges for methanol and ethylene glycol-based fermentations underscores the theoretical advantages of new synthetic metabolic routes and advocates greater consideration of ethylene glycol, a C2 substrate that has received comparatively little attention to date.
Collapse
Affiliation(s)
- Nils Wagner
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Linxuan Wen
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Cláudio J R Frazão
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany
| | - Thomas Walther
- TU Dresden, Institute of Natural Materials Technology, Bergstraße 120, 01062 Dresden, Germany.
| |
Collapse
|
5
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
6
|
Production of Aldehydes by Biocatalysis. Int J Mol Sci 2021; 22:ijms22094949. [PMID: 34066641 PMCID: PMC8124467 DOI: 10.3390/ijms22094949] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
The production of aldehydes, highly reactive and toxic chemicals, brings specific challenges to biocatalytic processes. Absence of natural accumulation of aldehydes in microorganisms has led to a combination of in vitro and in vivo strategies for both, bulk and fine production. Advances in genetic and metabolic engineering and implementation of computational techniques led to the production of various enzymes with special requirements. Cofactor synthesis, post-translational modifications and structure engineering are applied to prepare active enzymes for one-step or cascade reactions. This review presents the highlights in biocatalytical production of aldehydes with the potential to shape future industrial applications.
Collapse
|
7
|
Mangkorn N, Kanokratana P, Roongsawang N, Laobuthee A, Laosiripojana N, Champreda V. Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles. J Biosci Bioeng 2018; 127:265-272. [PMID: 30243531 DOI: 10.1016/j.jbiosc.2018.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/05/2018] [Accepted: 08/16/2018] [Indexed: 01/15/2023]
Abstract
Alcohol oxidase catalyzes the oxidation of primary alcohols into the corresponding aldehydes, making it a potential biocatalyst in the chemical industry. However, the high production cost and poor operational stability of this enzyme are limitations for industrial application. Immobilization of enzyme onto solid supports is a useful strategy for improving enzyme stability. In this work, alcohol oxidase from the thermotolerant methylotrophic yeast Ogataea thermomethanolica (OthAOX) was covalently immobilized onto barium ferrite (BaFe12O19) magnetic microparticles. Among different conditions tested, the highest immobilization efficiency of 71.0 % and catalytic activity of 34.6 U/g was obtained. Immobilization of OthAOX onto magnetic support was shown by Fourier-Transformed infrared microscopy, scanning electron microscopy and X-ray diffraction. The immobilized OthAOX worked optimally at 55 °C and pH 8.0. Immobilization also improved thermostability, in which >65% of the initial immobilized enzyme activity was retained after 24 h pre-incubation at 45 °C. The immobilized enzyme showed a greater catalytic efficiency for oxidation of methanol and ethanol than free enzyme. The immobilized enzyme could be recovered by magnetization and recycled for at least three consecutive batches, after which 70% activity remained. The properties of the immobilized enzyme suggest its potential industrial application for synthesis of aldehyde.
Collapse
Affiliation(s)
- Natthaya Mangkorn
- Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand
| | - Pattanop Kanokratana
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Apirat Laobuthee
- Department of Material Engineering, Faculty of Engineering, Kaetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Navadol Laosiripojana
- Joint Graduate School for Energy and Environment (JGSEE), King Mongkut's University of Technology Thonburi, Bangmod, Bangkok 10140, Thailand; JGSEE-BIOTEC Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Innovative Cluster 2 Building, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand
| | - Verawat Champreda
- Enzyme Technology Laboratory, National Center for Genetic Engineering and Biotechnology, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand; JGSEE-BIOTEC Integrative Biorefinery Laboratory, National Center for Genetic Engineering and Biotechnology, Innovative Cluster 2 Building, Phahonyothin Road, Khlong Luang, Pathum Thani 12120, Thailand.
| |
Collapse
|