1
|
Kiseleva E, Mikhailopulo K, Sviridov O. Detection of Salmonella by competitive ELISA of lipopolysaccharide secreted into the culture medium. Anal Biochem 2024; 697:115695. [PMID: 39455039 DOI: 10.1016/j.ab.2024.115695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Detection of Salmonella in food is topical due to known cases of salmonellosis epidemics. Immunochemical methods including ELISA are widely used for Salmonella detection. Traditionally, commercial ELISA kits are based on sandwich technique and detect lipopolysaccharide (LPS), which is considered to be the component of the outer membrane of Gram-negative bacteria. Our aim was elaboration of competitive ELISA test for Salmonella detection in food with improved parameters. It was shown that in the Salmonella culture after the standard sample preparation procedure LPS is present mainly outside cells as a component of outer membrane vesicles. Improved sample preparation procedure includes separation of bacteria from the medium and analysis of the medium, which increases analytical sensitivity. Immobilization of the bovine serum albumin (BSA)-LPS conjugate in microplate wells allows to obtain a more homogeneous coating than immobilization of LPS itself. Thus, we have developed test system for Salmonella detection in food by competitive ELISA of LPS secreted into the culture medium with the immobilized BSA-LPS conjugate and monoclonal antibodies (mAb) to LPS core in the liquid phase. New competitive ELISA test is high sensitive, give reproducible results, allows the detection of any Salmonella serotype and is important for the protection of human health.
Collapse
Affiliation(s)
- Elena Kiseleva
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Belarus.
| | - Konstantin Mikhailopulo
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Belarus
| | - Oleg Sviridov
- Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus, Acad. Kuprevicha, 5/2, 220141, Minsk, Belarus
| |
Collapse
|
2
|
Adib N, Zahmatkesh A, Esmaeilnejad-Ahranjani P, Paradise A, Abdolmohammadi Khiav L, Bagheri M, Abdoli M, Adib A. Effect of formalin percentage, incubation time and temperature on Clostridium chauvoei culture inactivation and immunogenicity. Anaerobe 2023; 83:102781. [PMID: 37660749 DOI: 10.1016/j.anaerobe.2023.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/05/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVES In order to find the optimal inactivation conditions for Clostridium chauvoei culture, different factors were investigated and the immunogenicity of inactivated cultures was studied. METHODS C. chauvoei was cultured with different formalin percentages (0.3, 0.5 or 0.7% V/V), inactivation temperatures (37 °C or room temperature) and incubation times (one or two weeks). Sterility tests were performed and residual formaldehyde and pH were measured. Rabbits were immunized twice with inactivated cultures and sera were used for detection of immune response. RESULTS In the one-week experiment, 0.5 and 0.7% formalin inactivated the bacteria after one week, and the percentage of 0.3 inactivated after three weeks. The residual formaldehyde at weeks 1 and 8 was not significantly different. In the two-week experiment, cultures treated with 0.3 and 0.5% formalin were inactivated after four weeks, and those with 0.7% formalin were inactivated after three weeks. Residual formaldehyde at week 8 differed significantly from that of week 1. Residual formaldehyde was affected by incubation temperature since it was lower at 37 °C than in room temperature. Also, a significant effect was observed for formalin on pH, as higher formalin contents led to lower pH values of the cultures. ELISA showed the lowest antibody titer achieved by 0.7% formalin group. Antibody titer was not different between 0.3 and 0.5% formalin. CONCLUSIONS The best condition for inactivation of C. chauvoei was considered as one-week incubation with 0.5% formalin at 37 °C, leading to a high antibody response.
Collapse
Affiliation(s)
- Niusha Adib
- Department of Biology, Faculty of Converging Sciences and Technologies, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Parvaneh Esmaeilnejad-Ahranjani
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Alireza Paradise
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Lida Abdolmohammadi Khiav
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoumeh Bagheri
- Department of Honeybee, Silk Worm and Wildlife Diseases, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohammad Abdoli
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Atoosa Adib
- Department of Biophysics, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
3
|
ANAM K, ENDHARTI AT, POERANTO S, PRAWIRO SR. Peptide Sequence of Pili Subunit Protein 49.8 kDa Shigella flexneri as Antigenic Epitope for Shigellosis Vaccine Development. Turk J Pharm Sci 2022; 19:649-656. [PMID: 36544298 PMCID: PMC9780573 DOI: 10.4274/tjps.galenos.2021.75031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Objectives This study investigates the amino acid sequence and identifies antigenic epitopes of 49.8 kilodalton (kDa) pili protein Shigella flexneri, which will be used as candidates for the shigellosis vaccine. Materials and Methods Our study is a prospectively descriptive laboratory. We used bacterial isolate of S. flexneri pili isolation was performed using a pili cutter and sodium dodecyl-sulfate polyacrylamide gel electrophoresis. The amino acid sequences were analyzed using liquid chromatography dual mass spectrometry (LC-MS/MS) method in the proteomic laboratory. The target epitope antigenicity analysis was tested using Kolaskar and Tongaonkar Antigenicity software. The Bepired Linear Epitope Prediction software is used for epitope mapping. PymOL software was used for the visualization of proteins and molecular docking. Peptides and antibodies were applied to hemagglutination test and immune response was tested using the dot blot method. Results LC-MS/MS analysis results from the mascot server showed that the 49.8 kDa pili protein is S. flexneri similar to the flagellin protein of S. flexneri 1235-66 (ID I6H2T2). The results of antigenicity analysis and epitope mapping showed that areas of protein that has the most potential and antigenic epitopes are the regions 98-111 and 263-290 with the amino acid sequences, QSSTGTNSQSDLDS (Q-S) and DTTITKAETKTVTKNQVVDTPVTTDAAK (D-K). The results of the molecular docking interaction test between the peptide and the B-cell receptor have a low binding energy. Peptide Q-S and peptide D-K antigens are hemagglutinin molecules because they can agglutinate erythrocytes. The immune response between peptide antigens and anti-peptide antibodies can react based on color gradations in the dotblot method. Conclusion The amino acid sequences Q-S and D-K are potentially antigenic epitopes. These peptides can be used to develop candidates for shigellosis vaccine.
Collapse
Affiliation(s)
- Khoirul ANAM
- Universitas Brawijaya, Faculty of Medicine, Doctoral Program in Medical Science, Malang, Indonesia,Institute of Technology and Health Science of Wiyata Husada Samarinda, Medical Laboratory Technology Study Program, Samarinda, Indonesia,* Address for Correspondence: Phone: +6281347175316 E-mail:
| | - Agustina Tri ENDHARTI
- Universitas Brawijaya, Faculty of Medicine, Department of Parasitology, Malang, Indonesia
| | - Sri POERANTO
- Universitas Brawijaya, Faculty of Medicine, Department of Parasitology, Malang, Indonesia
| | - Sumarno Reto PRAWIRO
- Universitas Brawijaya, Faculty of Medicine, Department of Clinical Microbiology, Malang, Indonesia
| |
Collapse
|
4
|
Bagheri M, Khani MH, Zahmatkesh A, Barkhordari M, Ebrahimi MM, Asli E, Shahsavandi S, Banihashemi R, Esmaeilnejad-Ahranjani P, Bidhendi SM. Evaluation of Cellular and Humoral Immune Response in Chickens Immunized with Flagellin-Adjuvanted Inactivated Newcastle Disease Virus. Comp Immunol Microbiol Infect Dis 2022; 85:101796. [DOI: 10.1016/j.cimid.2022.101796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
5
|
Gennari A, Simon R, Sperotto NDDM, Bizarro CV, Basso LA, Machado P, Benvenutti EV, Renard G, Chies JM, Volpato G, Volken de Souza CF. Application of cellulosic materials as supports for single-step purification and immobilization of a recombinant β-galactosidase via cellulose-binding domain. Int J Biol Macromol 2022; 199:307-317. [PMID: 35007635 DOI: 10.1016/j.ijbiomac.2022.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/17/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
This study aimed to develop single-step purification and immobilization processes on cellulosic supports of β-galactosidase from Kluyveromyces sp. combined with the Cellulose-Binding Domain (CBD) tag. After 15 min of immobilization, with an enzymatic load of 150 U/gsupport, expressed activity values reached 106.88 (microcrystalline cellulose), 115.03 (alkaline nanocellulose), and 108.47 IU/g (acid nanocellulose). The derivatives produced were less sensitive to the presence of galactose in comparison with the soluble purified enzyme. Among the cations assessed (Na+, K+, Mg2+, and Ca2+), magnesium provided the highest increase in the enzymatic activity of β-galactosidases immobilized on cellulosic supports. Supports and derivatives showed no cytotoxic effect on the investigated cell cultures (HepG2 and Vero). Derivatives showed high operational stability in the hydrolysis of milk lactose and retained from 53 to 64% of their hydrolysis capacity after 40 reuse cycles. This study obtained biocatalyzers with promising characteristics for application in the food industry. Biocatalyzers were obtained through a low-cost one-step sustainable bioprocess of purification and immobilization of a β-galactosidase on cellulose via CBD.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Brazil; Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Brazil
| | | | - Cristiano Valim Bizarro
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil
| | - Luiz Augusto Basso
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pablo Machado
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Brazil; Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Gaby Renard
- Instituto Nacional de Ciência e Tecnologia em Tuberculose, Centro de Pesquisas em Biologia Molecular e Funcional, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | | |
Collapse
|
6
|
Gennari A, Simon R, de Andrade BC, Saraiva Macedo Timmers LF, Milani Martins VL, Renard G, Chies JM, Volpato G, Volken de Souza CF. Production of beta-galactosidase fused to a cellulose-binding domain for application in sustainable industrial processes. BIORESOURCE TECHNOLOGY 2021; 326:124747. [PMID: 33517047 DOI: 10.1016/j.biortech.2021.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
This study aimed to produce and characterize a recombinant Kluyveromyces sp. β-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl β-d-1-thiogalactopyranoside (IPTG) 0.5 mM (108.77 U/mL) or lactose 5 g/L (93.10 U/mL) as inducers. Cultures at bioreactor scale indicated that higher product yield values in relation to biomass (2000 U/g) and productivity (0.72 U/mL.h) were obtained in culture media containing higher protein concentration. The recombinant enzyme showed high binding affinity to nanocellulose, reaching both immobilization yield and efficiency values of approximately 70% at pH 7.0 after 10 min reaction. The results of the present study pointed out a strategy for recombinant β-galactosidase-CBD production and immobilization, aiming toward the application in sustainable industrial processes using low-cost inputs.
Collapse
Affiliation(s)
- Adriano Gennari
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Renate Simon
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | - Bruna Coelho de Andrade
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil
| | | | - Vera Lúcia Milani Martins
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Gaby Renard
- Centro de Pesquisa em Biologia Molecular e Funcional, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Giandra Volpato
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - IFRS, Campus Porto Alegre, Porto Alegre, RS, Brazil
| | - Claucia Fernanda Volken de Souza
- Laboratório de Biotecnologia de Alimentos, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil; Programa de Pós-Graduação em Biotecnologia, Universidade do Vale do Taquari - Univates, Lajeado, RS, Brazil.
| |
Collapse
|
7
|
Barkhordari M, Bagheri M, Irian S, Khani MH, Ebrahimi MM, Zahmatkesh A, Shahsavandi S. Comparison of flagellin and an oil-emulsion adjuvant in inactivated Newcastle disease vaccine in stimulation of immunogenic parameters. Comp Immunol Microbiol Infect Dis 2021; 75:101622. [PMID: 33607396 DOI: 10.1016/j.cimid.2021.101622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 10/22/2022]
Abstract
The present study was designed to investigate the potential application of native (N) and recombinant (truncated modified [tmFliC] and full-length [flFliC]) flagellin proteins along with inactivated Newcastle disease virus (NDV). Fifty six SPF chickens were immunized twice with PBS (control), inactivated NDV (Ag), inactivated NDV/flFliC (AgF), inactivated NDV/tmFliC (AgT), inactivated NDV/N (AgN), commercial vaccine containing Montanide (Vac) and Vac/N (VacN), with a two-week interval. Blood was collected weekly and spleens were harvested after chickens were sacrificed. Interleukin-6 (IL-6) and tumor necrotic factor-α (TNF-α) gene expression in peripheral blood mononuclear cells were analyzed by Real-Time PCR. Antibody response was assessed by haemagglutination inhibition (HI). Cellular activity was quantified by MTT assay. Results showed that the most IL-6 and TNF-α gene expression was observed in AgF group (P < 0.01). The lowest gene expression among vaccinated groups was observed in Ag group for IL-6 and Ag and Vac group for TNF-α. The highest HI titer was observed in Vac, VacN, AgF and AgT groups. The AgF group showed the highest cellular activity (P < 0.01). In conclusion, flagellin-adjuvanted groups showed a pro-inflammatory effect and acted similarly to or better than the Vac group. Hence, flagellin can be proposed as a potential adjuvant for ND vaccine.
Collapse
Affiliation(s)
- Maryam Barkhordari
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Masoumeh Bagheri
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad-Hosein Khani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Majid Ebrahimi
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azadeh Zahmatkesh
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Shahla Shahsavandi
- Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
8
|
Khani MH, Bagheri M, Zahmatkesh A, Aghaiypour K, Mirjalili A. Effect of flagellin on inhibition of infectious mechanisms by activating opsonization and salmonella flagellum disruption. Microb Pathog 2020; 142:104057. [PMID: 32058025 DOI: 10.1016/j.micpath.2020.104057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 01/31/2023]
Abstract
Some serovars of salmonella cause huge global diseases such as enteric fever and invasive non typhoidal Salmonella disease. Flagellin as a key antigenic component of salmonella, can induce humoral and cellular immunity responses. In this research, we performed an opsonophagocytic killing assay (OPKA) as an important mechanism of the host-defense system, for salmonella to study the activity of anti-sera of native FliC, truncated modified recombinant FliC (tmFliC) and full length recombinant FliC proteins (flFliC). Also, the potency of antibodies for inhibiting bacterial movement was evaluated by traditional and newly-designed motility inhibition assay methods. Results showed both recombinant FliC anti-sera and native FliC (nFliC) anti-serum had the ability to opsonize Salmonella typhimurim, which led to bacterial clearance by mice macrophages. Also, inhibition of bacterial motility was observed for all anti-sera. Anti-nFliC and anti-flFliC sera showed higher effects on Salmonella typhimurim motility than that of tmFliC. In traditional method, about 88%, 86% and 80% inhibition were observed by using 5% nFliC, anti-flFliC and anti-tmFliC sera, respectively. In the newly-designed method using SIM (Sulfide indole motility) medium, results confirmed the traditional method for motility inhibition. Our findings suggest that salmonella fliC as a protective antigen may disrupt the flagellum apparatus activity.
Collapse
Affiliation(s)
- Mohammad-Hosein Khani
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Khosrow Aghaiypour
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Mirjalili
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
9
|
Khani MH, Bagheri M, Zahmatkesh A, Moradi Bidhendi S. Immunostimulatory effects of truncated and full-length flagellin recombinant proteins. Microb Pathog 2018; 127:190-197. [PMID: 30528248 DOI: 10.1016/j.micpath.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 02/04/2023]
Abstract
Problems regarding purification efficacy in recombinant technologies is due to the protein structure. Experimental manipulation of genes and the subsequent proteins may overcome this issue. In order to improve production efficacy and maintain immunestimulatory effect of flagellin, the Toll-like Receptor 5 (TLR5) ligand and a potent adjuvant, we performed a bioinformatic study to find the best model for FliC manipulation. Truncated modified FliC (tmFliC) and full length FliC (flFliC) genes were cloned and expressed in pET-21a vector and protein purification was carried out using an improved His-Tag method. Polyclonal antibodies were generated against flFliC and tmFliC in New Zealand white rabbits. IgG response to the recombinant proteins was determined by ELISA. Cross-reactivity assay was performed by ELISA for all proteins and bacteria. Immunogenicity of tmFliC and flFliC was evaluated in chicken cells, and expression level of tumor necrotic factor-α (TNF-α) and interleukin-6 (IL-6) were relatively analyzed by Real-Time-PCR. Results showed high purification efficacy for tmFliC. Antibody titer of tmFliC was significantly higher than that of flFliC. In addition, the cross-reactivity assay for both proteins and Salmonella was positive which indicates similar epitopic regions. Stimulation of both FliCs significantly increased TNF-α and IL-6 expression in peripheral blood mononuclear cells (PBMCs) and splenocytes, with higher effect observed with flFliC. IL-8 protein level increased after 6 and 24 h stimulation with different concentrations of tmFliC and flFliC. These results suggest that the aimed gene modification in fliC gene produces a bioactive immunostimulant type of flagellin which upregulates TLR5 downstream genes as well as in flFliC.
Collapse
Affiliation(s)
- Mohammad-Hosein Khani
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Soheila Moradi Bidhendi
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|