1
|
Bednarek A, Satala D, Zawrotniak M, Nobbs AH, Rapala-Kozik M, Kozik A. Glyceraldehyde 3-Phosphate Dehydrogenase on the Surface of Candida albicans and Nakaseomyces glabratus Cells-A Moonlighting Protein That Binds Human Vitronectin and Plasminogen and Can Adsorb to Pathogenic Fungal Cells via Major Adhesins Als3 and Epa6. Int J Mol Sci 2024; 25:1013. [PMID: 38256088 PMCID: PMC10815899 DOI: 10.3390/ijms25021013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Candida albicans and other closely related pathogenic yeast-like fungi carry on their surface numerous loosely adsorbed "moonlighting proteins"-proteins that play evolutionarily conserved intracellular functions but also appear on the cell surface and exhibit additional functions, e.g., contributing to attachment to host tissues. In the current work, we characterized this "moonlighting" role for glyceraldehyde 3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12) of C. albicans and Nakaseomyces glabratus. GAPDH was directly visualized on the cell surface of both species and shown to play a significant part in the total capacity of fungal cells to bind two selected human host proteins-vitronectin and plasminogen. Using purified proteins, both host proteins were found to tightly interact with GAPDH, with dissociation constants in an order of 10-8 M, as determined by bio-layer interferometry and surface plasmon resonance measurements. It was also shown that exogenous GAPDH tightly adheres to the surface of candidal cells, suggesting that the cell surface location of this moonlighting protein may partly result from the readsorption of its soluble form, which may be present at an infection site (e.g., due to release from dying fungal cells). The major dedicated adhesins, covalently bound to the cell wall-agglutinin-like sequence protein 3 (Als3) and epithelial adhesin 6 (Epa6)-were suggested to serve as the docking platforms for GAPDH in C. albicans and N. glabratus, respectively.
Collapse
Affiliation(s)
- Aneta Bednarek
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
- Doctoral School of Exact and Natural Sciences, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Dorota Satala
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Marcin Zawrotniak
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Angela H. Nobbs
- Bristol Dental School Research Laboratories, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK;
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland; (D.S.); (M.Z.); (M.R.-K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland;
| |
Collapse
|
2
|
Benedini LJ, Furlan FF, Figueiredo D, Cabrera-Crespo J, Ribeiro MPA, Campani G, Gonçalves VM, Zangirolami TC. A comprehensive method for modeling and simulating ion exchange chromatography of complex mixtures. Protein Expr Purif 2023; 205:106228. [PMID: 36587709 DOI: 10.1016/j.pep.2022.106228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
In recent years, many biological-based products have been developed, representing a significant fraction of income in the pharmaceutical market. Ion exchange chromatography is an important downstream step for the purification of target recombinant proteins present in clarified cell extracts, together with many other unknown impurities. This work develops a robust approach to model and simulate the purification of untagged heterologous proteins, so that the improved conditions to carry out an ion exchange chromatography are identified in a rational basis prior to the real purification run itself. Purification of the pneumococcal surface protein A (PspA4Pro) was used as a case study. This protein is produced by recombinant Escherichia coli and is a candidate for the manufacture of improved pneumococcal vaccines. The developed method combined experimental and computational procedures. Different anion exchange operating conditions were mapped in order to gather a broad range of representative experimental data. The equilibrium dispersive and the steric mass action equations were used to model and simulate the process. A training strategy to fit the model and separately describe the elution profiles of PspA4Pro and other proteins of the cell extract was applied. Based on the simulation results, a reduced ionic strength was applied for PspA4Pro elution, leading to increases of 14.9% and 11.5% for PspA4Pro recovery and purity, respectively, compared to the original elution profile. These results showed the potential of this method, which could be further applied to improve the performance of ion exchange chromatography in the purification of other target proteins under real process conditions.
Collapse
Affiliation(s)
- Leandro J Benedini
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Federal Institute of São Paulo (IFSP), Catanduva, Brazil.
| | - Felipe F Furlan
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Douglas Figueiredo
- Butantan Institute, Laboratory of Vaccine Development, São Paulo, Brazil
| | | | - Marcelo P A Ribeiro
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Gilson Campani
- Department of Engineering, Federal University of Lavras, Lavras, Brazil
| | | | - Teresa C Zangirolami
- Graduate Program in Chemical Engineering (PPGEQ), Federal University of São Carlos (UFSCar), São Carlos, Brazil; Chemical Engineering Department, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| |
Collapse
|
3
|
Fatima K, Naqvi F, Younas H. A Review: Molecular Chaperone-mediated Folding, Unfolding and Disaggregation of Expressed Recombinant Proteins. Cell Biochem Biophys 2021; 79:153-174. [PMID: 33634426 DOI: 10.1007/s12013-021-00970-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/01/2021] [Indexed: 12/26/2022]
Abstract
The advancements in biotechnology over time have led to an increase in the demand of pure, soluble and functionally active proteins. Recombinant protein production has thus been employed to obtain high expression of purified proteins in bulk. E. coli is considered as the most desirable host for recombinant protein production due to its inexpensive and fast cultivation, simple nutritional requirements and known genetics. Despite all these benefits, recombinant protein production often comes with drawbacks, such as, the most common being the formation of inclusion bodies due to improper protein folding. Consequently, this can lead to the loss of the structure-function relationship of a protein. Apart from various strategies, one major strategy to resolve this issue is the use of molecular chaperones that act as folding modulators for proteins. Molecular chaperones assist newly synthesized, aggregated or misfolded proteins to fold into their native conformations. Chaperones have been widely used to improve the expression of various proteins which are otherwise difficult to produce in E. coli. Here, we discuss the structure, function, and role of major E. coli molecular chaperones in recombinant technology such as trigger factor, GroEL, DnaK and ClpB.
Collapse
Affiliation(s)
- Komal Fatima
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Fatima Naqvi
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan
| | - Hooria Younas
- Department of Biochemistry, Kinnaird College for Women, Lahore, Punjab, Pakistan.
| |
Collapse
|
4
|
Schormann N, Campos J, Motamed R, Hayden KL, Gould JR, Green TJ, Senkovich O, Banerjee S, Ulett GC, Chattopadhyay D. Chlamydia trachomatis glyceraldehyde 3-phosphate dehydrogenase: Enzyme kinetics, high-resolution crystal structure, and plasminogen binding. Protein Sci 2020; 29:2446-2458. [PMID: 33058314 DOI: 10.1002/pro.3975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/27/2022]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is an evolutionarily conserved essential enzyme in the glycolytic pathway. GAPDH is also involved in a wide spectrum of non-catalytic cellular 'moonlighting' functions. Bacterial surface-associated GAPDHs engage in many host interactions that aid in colonization, pathogenesis, and virulence. We have structurally and functionally characterized the recombinant GAPDH of the obligate intracellular bacteria Chlamydia trachomatis, the leading cause of sexually transmitted bacterial and ocular infections. Contrary to earlier speculations, recent data confirm the presence of glucose-catabolizing enzymes including GAPDH in both stages of the biphasic life cycle of the bacterium. The high-resolution crystal structure described here provides a close-up view of the enzyme's active site and surface topology and reveals two chemically modified cysteine residues. Moreover, we show for the first time that purified C. trachomatis GAPDH binds to human plasminogen and plasmin. Based on the versatility of GAPDH's functions, data presented here emphasize the need for investigating the Chlamydiae GAPDH's involvement in biological functions beyond energy metabolism.
Collapse
Affiliation(s)
- Norbert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Juan Campos
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Rachael Motamed
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Katherine L Hayden
- Department of Chemistry and Physics, Birmingham-Southern College, Birmingham, Alabama, USA
| | - Joseph R Gould
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Olga Senkovich
- Department of Biochemistry and Molecular Genetics, Midwestern University, Glendale, Arizona, USA
| | - Surajit Banerjee
- Northeastern Collaborative Access Team and Department of Chemistry and Chemical Biology, Cornell University, Argonne, Illinois, USA
| | - Glen C Ulett
- School of Medical Sciences, and Menzies Health Institute Queensland, Griffith University, Parklands, Australia
| | | |
Collapse
|
5
|
Zhang Y, Li Z, Kholodkevich S, Sharov A, Feng Y, Ren N, Sun K. Microcystin-LR-induced changes of hepatopancreatic transcriptome, intestinal microbiota, and histopathology of freshwater crayfish (Procambarus clarkii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134549. [PMID: 31810700 DOI: 10.1016/j.scitotenv.2019.134549] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/19/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
As a hepatotoxin, microcystin-LR (MC-LR) poses a great threat to aquatic organisms. In this research, the hepatopancreatic transcriptome, intestinal microbiota, and histopathology of Procambarus clarkii (P. clarkii) in response to acute MC-LR exposure were studied. RNA-seq analysis of hepatopancreas identified 372 and 781 differentially expressed genes (DEGs) after treatment with 10 and 40 μg/L MC-LR, respectively. Among the DEGs, 23 genes were immune-related and 21 genes were redox-related. GO functional enrichment analysis revealed that MC-LR could impact nuclear-transcribed mRNA catabolic process, cobalamin- and heme-related processes, and sirohydrochlorin cobaltochelatase activity of P. clarkii. In addition, the only significantly enriched KEGG pathway induced by MC-LR was galactose metabolism pathway. Meanwhile, sequencing of the bacterial 16S rRNA gene demonstrated that MC-LR decreased bacterial richness and diversity, and altered the intestinal microbiota composition. At the phylum level, after 96 h, the abundance of Verrucomicrobia decreased after treatment with 10 and 40 μg/L MC-LR, while Firmicutes increased in the 40 μg/L MC-LR-treated group. At the genus level, the abundances of 15 genera were significantly altered after exposure to MC-LR. Our research demonstrated that MC-LR exposure caused histological alterations such as structural damage of hepatopancreas and intestines. This research provides an insight into the mechanisms associated with MC-LR toxicity in aquatic crustaceans.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zheyu Li
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Sergey Kholodkevich
- Institute of Earth Sciences, Saint-Petersburg State University, Saint-Petersburg 199034, Russia; Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia
| | - Andrey Sharov
- Saint-Petersburg Scientific Research Center for Ecological Safety, Russian Academy of Sciences, Saint-Petersburg 197110, Russia; Papanin Institute for Biology of the Inland Waters, Russian Academy of Sciences, Borok 152742, Russia
| | - Yujie Feng
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nanqi Ren
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Kai Sun
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
He YU, Wang S, Yin X, Sun F, He B, Liu X. Comparison of Extracellular Proteins from Virulent and Avirulent Vibrio parahaemolyticus Strains To Identify Potential Virulence Factors. J Food Prot 2020; 83:155-162. [PMID: 31860395 DOI: 10.4315/0362-028x.jfp-19-188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vibrio parahaemolyticus is a leading seafood-borne pathogen that causes gastroenteritis, septicemia, and serious wound infections due to the actions of virulence-associated proteins. We compared the extracellular proteins of nonvirulent JHY20 and virulent ATCC 33847 V. parahaemolyticus reference strains. Eighteen extracellular proteins were identified from secretory profiles, and 11 (68.75%) of the 16 proteins in ATCC 33847 are associated with virulence and/or protection against adverse conditions: trigger factor, chaperone SurA, aspartate-semialdehyde dehydrogenase, 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase, glutamate 5-kinase, alanine dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, outer membrane protein OmpV, ribosome-associated inhibitor A, chaperone protein Skp, and universal stress protein. Two nontoxic-related proteins, amino acid ABC transporter substrate-binding protein and an uncharacterized protein, were identified in JHY20. The results provide a theoretical basis for supporting safety risk assessment of aquatic foods, illuminate the pathogenic mechanisms of V. parahaemolyticus, and assist the identification of novel vaccine candidates for foodborne pathogens.
Collapse
Affiliation(s)
- Y U He
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | - Shuai Wang
- College of Food (Biotechnology) Engineering.,Key Construction Laboratory of Food Resources Development and the Quality Safety, Xuzhou University of Technology, Jiangsu, Xuzhou 221018, People's Republic of China
| | | | - Fengjiao Sun
- Logistics & Security Department, Shanghai Civil Aviation College, Shanghai 201300, People's Republic of China
| | - Bin He
- Environment Monitoring Station, Zaozhuang Municipal Bureau of Ecology and Environment, Shandong 277100, People's Republic of China
| | - Xiao Liu
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China
| |
Collapse
|