1
|
Gruzdev N, Hacham Y, Haviv H, Stern I, Gabay M, Bloch I, Amir R, Gal M, Yadid I. Conversion of methionine biosynthesis in Escherichia coli from trans- to direct-sulfurylation enhances extracellular methionine levels. Microb Cell Fact 2023; 22:151. [PMID: 37568230 PMCID: PMC10416483 DOI: 10.1186/s12934-023-02150-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/13/2023] [Indexed: 08/13/2023] Open
Abstract
Methionine is an essential amino acid in mammals and a precursor for vital metabolites required for the survival of all organisms. Consequently, its inclusion is required in diverse applications, such as food, feed, and pharmaceuticals. Although amino acids and other metabolites are commonly produced through microbial fermentation, high-yield biosynthesis of L-methionine remains a significant challenge due to the strict cellular regulation of the biosynthesis pathway. As a result, methionine is produced primarily synthetically, resulting in a racemic mixture of D,L-methionine. This study explores methionine bio-production in E. coli by replacing its native trans-sulfurylation pathway with the more common direct-sulfurylation pathway used by other bacteria. To this end, we generated a methionine auxotroph E. coli strain (MG1655) by simultaneously deleting metA and metB genes and complementing them with metX and metY from different bacteria. Complementation of the genetically modified E. coli with metX/metY from Cyclobacterium marinum or Deinococcus geothermalis, together with the deletion of the global repressor metJ and overexpression of the transporter yjeH, resulted in a substantial increase of up to 126 and 160-fold methionine relative to the wild-type strain, respectively, and accumulation of up to 700 mg/L using minimal MOPS medium and 2 ml culture. Our findings provide a method to study methionine biosynthesis and a chassis for enhancing L-methionine production by fermentation.
Collapse
Affiliation(s)
- Nadya Gruzdev
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Yael Hacham
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 1220800, Israel
| | - Hadar Haviv
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Inbar Stern
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Matan Gabay
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Itai Bloch
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
| | - Rachel Amir
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel
- Tel-Hai College, Upper Galilee, 1220800, Israel
| | - Maayan Gal
- Department of Oral Biology, Goldschleger School of Dental Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| | - Itamar Yadid
- Migal - Galilee Research Institute, Kiryat Shmona, 11016, Israel.
- Tel-Hai College, Upper Galilee, 1220800, Israel.
| |
Collapse
|
2
|
Kulikova VV, Revtovich SV, Lyfenko AD, Morozova EA, Koval VS, Bazhulina NP, Demidkina TV. O-Acetylhomoserine Sulfhydrylase from Clostridioides difficile: Role of Tyrosine Residues in the Active Site. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:600-609. [PMID: 37331706 DOI: 10.1134/s0006297923050036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/20/2023]
Abstract
O-acetylhomoserine sulfhydrylase is one of the key enzymes in biosynthesis of methionine in Clostridioides difficile. The mechanism of γ-substitution reaction of O-acetyl-L-homoserine catalyzed by this enzyme is the least studied among the pyridoxal-5'-phosphate-dependent enzymes involved in metabolism of cysteine and methionine. To clarify the role of active site residues Tyr52 and Tyr107, four mutant forms of the enzyme with replacements of these residues with phenylalanine and alanine were generated. Catalytic and spectral properties of the mutant forms were investigated. The rate of γ-substitution reaction catalyzed by the mutant forms with replaced Tyr52 residue decreased by more than three orders of magnitude compared to the wild-type enzyme. The Tyr107Phe and Tyr107Ala mutant forms practically did not catalyze this reaction. Replacements of the Tyr52 and Tyr107 residues led to the decrease in affinity of apoenzyme to coenzyme by three orders of magnitude and changes in the ionic state of the internal aldimine of the enzyme. The obtained results allowed us to assume that Tyr52 is involved in ensuring optimal position of the catalytic coenzyme-binding lysine residue at the stages of C-α-proton elimination and elimination of the side group of the substrate. Tyr107 could act as a general acid catalyst at the stage of acetate elimination.
Collapse
Affiliation(s)
- Vitalia V Kulikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Svetlana V Revtovich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna D Lyfenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Elena A Morozova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Vasiliy S Koval
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Natalya P Bazhulina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Tatyana V Demidkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
3
|
Brewster JL, Pachl P, McKellar JLO, Selmer M, Squire CJ, Patrick WM. Structures and kinetics of Thermotoga maritima MetY reveal new insights into the predominant sulfurylation enzyme of bacterial methionine biosynthesis. J Biol Chem 2021; 296:100797. [PMID: 34019879 PMCID: PMC8191291 DOI: 10.1016/j.jbc.2021.100797] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/12/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
Bacterial methionine biosynthesis can take place by either the trans-sulfurylation route or direct sulfurylation. The enzymes responsible for trans-sulfurylation have been characterized extensively because they occur in model organisms such as Escherichia coli. However, direct sulfurylation is actually the predominant route for methionine biosynthesis across the phylogenetic tree. In this pathway, most bacteria use an O-acetylhomoserine aminocarboxypropyltransferase (MetY) to catalyze the formation of homocysteine from O-acetylhomoserine and bisulfide. Despite the widespread distribution of MetY, this pyridoxal 5'-phosphate-dependent enzyme remains comparatively understudied. To address this knowledge gap, we have characterized the MetY from Thermotoga maritima (TmMetY). At its optimal temperature of 70 °C, TmMetY has a turnover number (apparent kcat = 900 s-1) that is 10- to 700-fold higher than the three other MetY enzymes for which data are available. We also present crystal structures of TmMetY in the internal aldimine form and, fortuitously, with a β,γ-unsaturated ketimine reaction intermediate. This intermediate is identical to that found in the catalytic cycle of cystathionine γ-synthase (MetB), which is a homologous enzyme from the trans-sulfurylation pathway. By comparing the TmMetY and MetB structures, we have identified Arg270 as a critical determinant of specificity. It helps to wall off the active site of TmMetY, disfavoring the binding of the first MetB substrate, O-succinylhomoserine. It also ensures a strict specificity for bisulfide as the second substrate of MetY by occluding the larger MetB substrate, cysteine. Overall, this work illuminates the subtle structural mechanisms by which homologous pyridoxal 5'-phosphate-dependent enzymes can effect different catalytic, and therefore metabolic, outcomes.
Collapse
Affiliation(s)
- Jodi L Brewster
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Petr Pachl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Wayne M Patrick
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| |
Collapse
|