1
|
Liu LH, Guo Y, Yang M, Zhang Y, Wu YR, Jiang A, Zhang Z. Screening microorganisms with robust and stable protein expression and secretion capacity. Protein Sci 2025; 34:e70007. [PMID: 39688309 DOI: 10.1002/pro.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024]
Abstract
Robust and stable protein secretion is crucial for efficient recombinant protein production. Here, a novel and powerful platform using split GFP activated droplet sorting (SGADS) has been developed to significantly boost the yields of the protein of interest (POI). The SGADS platform leverages solubilizing peptide P17 and secretory expression in Bacillus subtilis to optimize two split GFP sensors: the P17-GFP1-9/GFP10-POI-GFP11 sensor for assessing protease activity and the P17-GFP1-10/GFP11-POI sensor for measuring secretion capacity. This innovative platform has demonstrated its effectiveness by successfully screening high-performance mutant strains capable of producing collagen, amylase, and protein glutaminase across a range of host organisms, including Escherichia coli, Bacillus subtilis, and Pichia pastoris. The substantial increases in production achieved with the SGADS platform highlight its broad applicability and potential in enhancing recombinant protein production.
Collapse
Affiliation(s)
- Li-Hua Liu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yu Guo
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Min Yang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yang Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Yi-Rui Wu
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Ao Jiang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
2
|
Lin HJ, Hsu PH, Lin TC, Lu WJ, Lin HTV. Solid- and Vapor-Phase Antibacterial Activities and Mechanisms of Essential Oils Against Fish Spoilage Bacteria. Antibiotics (Basel) 2024; 13:1137. [PMID: 39766527 PMCID: PMC11672770 DOI: 10.3390/antibiotics13121137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Essential oils (EOs), regarded as secondary metabolites from plants, possess effective antibacterial properties. This study investigates the antibacterial efficacy of seven citrus EOs against six spoilage bacteria: Vibrio parahaemolyticus, V. harveyi, Photobacterium damselae, Shewanella putrefaciens, Carnobacterium divergens, and Lactobacillus pentosus. The antibacterial activity of these EOs was evaluated using solid- and vapor-phase applications. All tested EOs demonstrated effective antibacterial activity at a concentration of 294 μL/L against Gram-negative bacteria. Notably, lemon and orange EOs exhibited dose-dependent inhibition in both solid- and vapor-phase applications, with minimum effective concentrations ranging from 29.4 to 58.8 μL/L. Following treatment with lemon and orange EOs for 6 h at 1/4 minimum inhibitory concentration, leakage of intracellular DNA and proteins was observed, indicating damage to the cell membrane/wall. Proteomic analysis revealed distinct mechanisms: lemon EO impaired bacterial antioxidant defenses, while orange EO disrupted cell division, leading to reduced bacterial viability. These findings provide valuable insights into the potential of different EO application forms in controlling spoilage bacteria.
Collapse
Affiliation(s)
- Hsuan-Ju Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan; (H.-J.L.); (W.-J.L.)
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan;
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming University, No. 155, Sec. 2, Linong Street, Taipei 112, Taiwan
| | - Tze-Chia Lin
- K. F. Lings Co., Ltd., No. 294, Furong Street, Taoyuan 334, Taiwan;
| | - Wen-Jung Lu
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan; (H.-J.L.); (W.-J.L.)
- School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Hong-Ting Victor Lin
- Department of Food Science, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan; (H.-J.L.); (W.-J.L.)
- Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Pei-Ning Road, Keelung 202, Taiwan
| |
Collapse
|
3
|
Liu X, Yang S, Sun M, Gao AX, Fan Z, Yang Y, Zheng P, Liu C, Li Y, Bai Z. Enhanced molecular stability of ApxII antigen during secretion in Corynebacterium glutamicum by rational design. J Biotechnol 2024; 394:73-84. [PMID: 39173715 DOI: 10.1016/j.jbiotec.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
ApxII is a vaccine antigen used to protect against porcine contagious pleuropneumonia, which is a significant threat to the pig industry. Here, we aimed to improve the proteolytic degradation stability of ApxII during its secretion by establishing a complete screening process of stable variants through bioinformatics and site-directed mutagenesis. We employed a combination of semi-rational and rational design strategies to create 34 single-point variants of ApxII. Among them, R114E and T115D variants exhibited better stability without compromising antigen activity. Furthermore, we constructed a multi-site variant, R114E/T115D, which demonstrated the best stability, activity, and yield. Protein stability and molecular dynamic analysis indicated that the greater solubility and lower structural expansion coefficient might explain the increased stability of R114E/T115D. Additionally, site T115 was identified as a key point of truncated ApxII stability. The R114E/T115D variant, with its proven stability and intact antigenic activity, holds promising prospects for industrial-scale applications in the prevention of porcine contagious pleuropneumonia.
Collapse
Affiliation(s)
- Xiuxia Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shujie Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Manman Sun
- Key laboratory of high magnetic field and Ion beam physical biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ziming Fan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Yankun Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Pei Zheng
- Tecon Biology CO.Ltd, Urumqi 83000, China
| | - Chunli Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214112, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
4
|
Laurent JM, Jain A, Kan A, Steinacher M, Enrriquez Casimiro N, Stavrakis S, deMello AJ, Studart AR. Directed evolution of material-producing microorganisms. Proc Natl Acad Sci U S A 2024; 121:e2403585121. [PMID: 39042685 PMCID: PMC11295069 DOI: 10.1073/pnas.2403585121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/20/2024] [Indexed: 07/25/2024] Open
Abstract
Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species. Using Komagataeibacter sucrofermentans as a model cellulose-producing microorganism, we show that our droplet-based microfluidic platform enables the directed evolution of these bacteria toward a small number of cellulose overproducers from an initial pool of 40,000 random mutants. Sequencing of the evolved strains reveals an unexpected link between the cellulose-forming ability of the bacteria and a gene encoding a protease complex responsible for protein turnover in the cell. The ability to enhance the fitness of microorganisms toward a specific phenotype and to unravel genotype-phenotype links makes this high-throughput directed evolution platform a promising tool for the development of new strains for the sustainable manufacturing of materials.
Collapse
Affiliation(s)
- Julie M. Laurent
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Ankit Jain
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Anton Kan
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | - Mathias Steinacher
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| | | | - Stavros Stavrakis
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - Andrew J. deMello
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zürich, Zürich8093, Switzerland
| | - André R. Studart
- Department of Materials, Complex Materials, ETH Zürich, Zürich8093, Switzerland
| |
Collapse
|
5
|
Desiderato CK, Müller C, Schretzmeier A, Hasenauer KM, Gnannt B, Süpple B, Reiter A, Steier V, Oldiges M, Eikmanns BJ, Riedel CU. Optimized recombinant production of the bacteriocin garvicin Q by Corynebacterium glutamicum. Front Microbiol 2024; 14:1254882. [PMID: 38260893 PMCID: PMC10800739 DOI: 10.3389/fmicb.2023.1254882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Bacteriocins are antimicrobial peptides applied in food preservation and are interesting candidates as alternatives to conventional antibiotics or as microbiome modulators. Recently, we established Corynebacterium glutamicum as a suitable production host for various bacteriocins including garvicin Q (GarQ). Here, we establish secretion of GarQ by C. glutamicum via the Sec translocon achieving GarQ titers of about 7 mg L-1 in initial fermentations. At neutral pH, the cationic peptide is efficiently adsorbed to the negatively charged envelope of producer bacteria limiting availability of the bacteriocin in culture supernatants. A combination of CaCl2 and Tween 80 efficiently reduces GarQ adsorption to C. glutamicum. Moreover, cultivation in minimal medium supplemented with CaCl2 and Tween 80 improves GarQ production by C. glutamicum to about 15 mg L-1 but Tween 80 resulted in reduced GarQ activity at later timepoints. Using a reporter strain and proteomic analyses, we identified HtrA, a protease associated with secretion stress, as another potential factor limiting GarQ production. Transferring production to HtrA-deficient C. glutamicum K9 improves GarQ titers to close to 40 mg L-1. Applying conditions of low aeration prevented loss in activity at later timepoints and improved GarQ titers to about 100 mg L-1. This is about 50-fold higher than previously shown with a C. glutamicum strain employing the native GarQ transporter GarCD for secretion and in the range of levels observed with the native producer Lactococcus petauri B1726. Additionally, we tested several synthetic variants of GarQ and were able to show that exchange of the methionine in position 5 to a phenylalanine (GarQM5F) results in markedly increased activity against Lactococcus lactis and Listeria monocytogenes. In summary, our findings shed light on several aspects of recombinant GarQ production that may also be of relevance for production with natural producers and other bacteriocins.
Collapse
Affiliation(s)
- Christian K. Desiderato
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Carolin Müller
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Alexander Schretzmeier
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Katharina M. Hasenauer
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bruno Gnannt
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Bastian Süpple
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Alexander Reiter
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Valentin Steier
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Bernhard J. Eikmanns
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| | - Christian U. Riedel
- Institute of Molecular Biology and Biotechnology of Prokaryotes, University of Ulm, Ulm, Germany
| |
Collapse
|
6
|
Ito Y, Sasaki R, Asari S, Yasuda T, Ueda H, Kitaguchi T. Efficient Microfluidic Screening Method Using a Fluorescent Immunosensor for Recombinant Protein Secretions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207943. [PMID: 37093208 DOI: 10.1002/smll.202207943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Microbial secretory protein expression is widely used for biopharmaceutical protein production. However, establishing genetically modified industrial strains that secrete large amounts of a protein of interest is time-consuming. In this study, a simple and versatile high-throughput screening method for protein-secreting bacterial strains is developed. Different genotype variants induced by mutagens are encapsulated in microemulsions and cultured to secrete proteins inside the emulsions. The secreted protein of interest is detected as a fluorescence signal by the fluorescent immunosensor quenchbody (Q-body), and a cell sorter is used to select emulsions containing improved protein-secreting strains based on the fluorescence intensity. The concept of the screening method is demonstrated by culturing Corynebacterium glutamicum in emulsions and detecting the secreted proteins. Finally, productive strains of fibroblast growth factor 9 (FGF9) are screened, and the FGF9 secretion increased threefold compared to that of parent strain. This screening method can be applied to a wide range of proteins by fusing a small detection tag. This is a highly simple process that requires only the addition of a Q-body to the medium and does not require the addition of any substrates or chemical treatments. Furthermore, this method shortens the development period of industrial strains for biopharmaceutical protein production.
Collapse
Affiliation(s)
- Yoshihiro Ito
- Graduate School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Ryuichi Sasaki
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Sayaka Asari
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, 210-8681, Japan
| | - Takanobu Yasuda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Hiroshi Ueda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|
7
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Gao R, Sun‐Waterhouse D, Xiang H, Cui C, Waterhouse GIN. The effect of the
Corynebacterium glutamicum
on the shortening of fermentation time, physicochemical and sensory properties of soy sauce. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rui Gao
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Dongxiao Sun‐Waterhouse
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
- School of Chemical Sciences The University of Auckland Private Bag 92019 Auckland New Zealand
| | - Huan Xiang
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Chun Cui
- School of Food Science and Engineering South China University of Technology Guangzhou 510640 China
| | | |
Collapse
|