1
|
Reynoso-Ducoing OA, González-Rete B, Díaz E, Candelas-Otero FN, López-Aviña JA, Cabrera-Bravo M, Bucio-Torres MI, Torres-Gutiérrez E, Salazar-Schettino PM. Expression of Proteins, Glycoproteins, and Transcripts in the Guts of Fasting, Fed, and Trypanosoma cruzi-Infected Triatomines: A Systematic Review. Pathogens 2023; 12:1124. [PMID: 37764932 PMCID: PMC10534304 DOI: 10.3390/pathogens12091124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Chagas disease is caused by the hemoflagellate protozoan Trypanosoma cruzi. The main transmission mechanism for the parasite in endemic areas is contact with the feces of an infected triatomine bug. Part of the life cycle of T. cruzi occurs in the digestive tract of triatomines, where vector and parasite engage in a close interaction at a proteomic-molecular level. This interaction triggers replication and differentiation processes in the parasite that can affect its infectivity for the vertebrate host. With the aim of compiling and analyzing information from indexed publications on transcripts, proteins, and glycoproteins in the guts of fasting, fed, and T. cruzi-infected triatomines in the period 2000-2022, a systematic review was conducted following the PRISMA guidelines. Fifty-five original research articles retrieved from PubMed and ScienceDirect were selected; forty-four papers reported 1-26,946 transcripts, and twenty-one studies described 1-2603 peptides/proteins.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Elia Torres-Gutiérrez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico; (O.A.R.-D.); (B.G.-R.); (E.D.); (F.N.C.-O.); (J.A.L.-A.); (M.C.-B.); (M.I.B.-T.)
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, México City 04510, Mexico; (O.A.R.-D.); (B.G.-R.); (E.D.); (F.N.C.-O.); (J.A.L.-A.); (M.C.-B.); (M.I.B.-T.)
| |
Collapse
|
2
|
Walton A, Toth AL. Resource limitation, intra‐group aggression and brain neuropeptide expression in a social wasp. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Alexander Walton
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
| | - Amy L. Toth
- Department of Ecology, Evolution, and Organismal Biology Iowa State University Ames IA USA
- Department of Entomology Iowa State University Ames IA USA
| |
Collapse
|
3
|
Nässel DR, Zandawala M, Kawada T, Satake H. Tachykinins: Neuropeptides That Are Ancient, Diverse, Widespread and Functionally Pleiotropic. Front Neurosci 2019; 13:1262. [PMID: 31824255 PMCID: PMC6880623 DOI: 10.3389/fnins.2019.01262] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022] Open
Abstract
Tachykinins (TKs) are ancient neuropeptides present throughout the bilaterians and are, with some exceptions, characterized by a conserved FX1GX2Ramide carboxy terminus among protostomes and FXGLMamide in deuterostomes. The best-known TK is the vertebrate substance P, which in mammals, together with other TKs, has been implicated in health and disease with important roles in pain, inflammation, cancer, depressive disorder, immune system, gut function, hematopoiesis, sensory processing, and hormone regulation. The invertebrate TKs are also known to have multiple functions in the central nervous system and intestine and these have been investigated in more detail in the fly Drosophila and some other arthropods. Here, we review the protostome and deuterostome organization and evolution of TK precursors, peptides and their receptors, as well as their functions, which appear to be partly conserved across Bilateria. We also outline the distribution of TKs in the brains of representative organisms. In Drosophila, recent studies have revealed roles of TKs in early olfactory processing, neuromodulation in circuits controlling locomotion and food search, nociception, aggression, metabolic stress, and hormone release. TK signaling also regulates lipid metabolism in the Drosophila intestine. In crustaceans, TK is an important neuromodulator in rhythm-generating motor circuits in the stomatogastric nervous system and a presynaptic modulator of photoreceptor cells. Several additional functional roles of invertebrate TKs can be inferred from their distribution in various brain circuits. In addition, there are a few interesting cases where invertebrate TKs are injected into prey animals as vasodilators from salivary glands or paralyzing agents from venom glands. In these cases, the peptides are produced in the glands of the predator with sequences mimicking the prey TKs. Lastly, the TK-signaling system appears to have duplicated in Panarthropoda (comprising arthropods, onychophores, and tardigrades) to give rise to a novel type of peptides, natalisins, with a distinct receptor. The distribution and functions of natalisins are distinct from the TKs. In general, it appears that TKs are widely distributed and act in circuits at short range as neuromodulators or cotransmitters.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Tsuyoshi Kawada
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Honoo Satake
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| |
Collapse
|
4
|
Nässel DR, Zandawala M. Recent advances in neuropeptide signaling in Drosophila, from genes to physiology and behavior. Prog Neurobiol 2019; 179:101607. [PMID: 30905728 DOI: 10.1016/j.pneurobio.2019.02.003] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/18/2019] [Accepted: 02/28/2019] [Indexed: 12/11/2022]
Abstract
This review focuses on neuropeptides and peptide hormones, the largest and most diverse class of neuroactive substances, known in Drosophila and other animals to play roles in almost all aspects of daily life, as w;1;ell as in developmental processes. We provide an update on novel neuropeptides and receptors identified in the last decade, and highlight progress in analysis of neuropeptide signaling in Drosophila. Especially exciting is the huge amount of work published on novel functions of neuropeptides and peptide hormones in Drosophila, largely due to the rapid developments of powerful genetic methods, imaging techniques and innovative assays. We critically discuss the roles of peptides in olfaction, taste, foraging, feeding, clock function/sleep, aggression, mating/reproduction, learning and other behaviors, as well as in regulation of development, growth, metabolic and water homeostasis, stress responses, fecundity, and lifespan. We furthermore provide novel information on neuropeptide distribution and organization of peptidergic systems, as well as the phylogenetic relations between Drosophila neuropeptides and those of other phyla, including mammals. As will be shown, neuropeptide signaling is phylogenetically ancient, and not only are the structures of the peptides, precursors and receptors conserved over evolution, but also many functions of neuropeptide signaling in physiology and behavior.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Meet Zandawala
- Department of Zoology, Stockholm University, Stockholm, Sweden; Department of Neuroscience, Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Haddad ANS, Defferrari MS, Hana S, Szeto SG, Lange AB. Expression and functional characterization of tachykinin-related peptides in the blood-feeding bug, Rhodnius prolixus. Peptides 2018; 99:247-254. [PMID: 29133203 DOI: 10.1016/j.peptides.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/20/2022]
Abstract
Tachykinins (tachykinin-related peptides, TRPs) are multifunctional neuropeptides that have widespread distribution in the central nervous system (CNS) and in the gastrointestinal tract of many insects, and most have been shown to stimulate contractions of visceral muscles. Invertebrate TRPs carry a characteristic conserved C-terminal pentapeptide (FXGXR-amide) and most of them share some amino acid sequence similarities (approx. 45%) with the vertebrate and mammalian tachykinin family. We have functionally characterized the tachykinins in R. prolixus (Rhopr-TKs) and partially cloned the transcript that encodes for the peptide precursor. The transcript encodes 8 Rhopr-TKs, 7 of which are unique with Rhopr-TK 5 having 2 copies. The spatial distribution analysis of the Rhopr-TK transcript indicates that the highest expression levels are in the CNS, but transcript expression is also associated with salivary glands, fat body, dorsal vessel, and the various gut compartments. Rhopr-TK 1, 2 and 5 significantly increase the frequency and amplitude of peristaltic contractions of the salivary glands. Hindgut muscle also displayed a dose-dependent increase in basal tonus in response to Rhopr-TK1, 2 and 5. TK-like immunoreactivity was seen in a small group of processes that are situated on the lateral margins of the hindgut. Interestingly, kinin-like immunoreactivity is seen in immunoreactive processes on the lateral margin of the hindgut as well as fine processes covering the entire hindgut. Co-localization studies show that TK-like staining is always co-localized with kinin-like immunoreactivity, whereas kinin-like staining is seen in the fine processes that are devoid of TK-like immunoreactivity indicating that TKs are most likely released together with kinins to act on the hindgut. Rhopr-Kinin 2 is a potent stimulator of hindgut muscle contraction in R. prolixus. Addition of Rhopr-Kinin 2 and Rhopr-TK 2 to the hindgut leads to a contraction that was additive of the effects of Rhopr-Kinin 2 and Rhopr-TK 2 alone.
Collapse
Affiliation(s)
- A N S Haddad
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - M S Defferrari
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - S Hana
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - S G Szeto
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - A B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| |
Collapse
|
6
|
Predel R, Neupert S, Derst C, Reinhardt K, Wegener C. Neuropeptidomics of the Bed Bug Cimex lectularius. J Proteome Res 2017; 17:440-454. [PMID: 29148801 DOI: 10.1021/acs.jproteome.7b00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bed bug Cimex lectularius is a globally distributed human ectoparasite with fascinating biology. It has recently acquired resistance against a broad range of insecticides, causing a worldwide increase in bed bug infestations. The recent annotation of the bed bug genome revealed a full complement of neuropeptide and neuropeptide receptor genes in this species. With regard to the biology of C. lectularius, neuropeptide signaling is especially interesting because it regulates feeding, diuresis, digestion, as well as reproduction and also provides potential new targets for chemical control. To identify which neuropeptides are translated from the genome-predicted genes, we performed a comprehensive peptidomic analysis of the central nervous system of the bed bug. We identified in total 144 different peptides from 29 precursors, of which at least 67 likely present bioactive mature neuropeptides. C. lectularius corazonin and myosuppressin are unique and deviate considerably from the canonical insect consensus sequences. Several identified neuropeptides likely act as hormones, as evidenced by the occurrence of respective mass signals and immunoreactivity in neurohemal structures. Our data provide the most comprehensive peptidome of a Heteropteran species so far and in comparison suggest that a hematophageous life style does not require qualitative adaptations of the insect peptidome.
Collapse
Affiliation(s)
- Reinhard Predel
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Susanne Neupert
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Christian Derst
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Klaus Reinhardt
- Applied Zoology, Department of Biology, Technical University of Dresden , Zellescher Weg 20b, D-01062 Dresden, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
7
|
Zhao XC, Xie GY, Berg BG, Schachtner J, Homberg U. Distribution of tachykinin-related peptides in the brain of the tobacco budworm Heliothis virescens. J Comp Neurol 2017; 525:3918-3934. [DOI: 10.1002/cne.24310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/06/2017] [Accepted: 08/22/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Xin-Cheng Zhao
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
- Chemosensory lab/Department of Psychology; Norwegian University of Science and Technology; Trondheim 7489 Norway
| | - Gui-Ying Xie
- Department of Entomology, College of Plant Protection; Henan Agricultural University; Zhengzhou 450002 China
| | - Bente G. Berg
- Chemosensory lab/Department of Psychology; Norwegian University of Science and Technology; Trondheim 7489 Norway
| | - Joachim Schachtner
- Department of Biology, Animal Physiology; Philipps University; Marburg 35032 Germany
| | - Uwe Homberg
- Department of Biology, Animal Physiology; Philipps University; Marburg 35032 Germany
| |
Collapse
|
8
|
Ons S. Neuropeptides in the regulation of Rhodnius prolixus physiology. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:77-92. [PMID: 27210592 DOI: 10.1016/j.jinsphys.2016.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/19/2016] [Accepted: 05/18/2016] [Indexed: 06/05/2023]
Abstract
In the kissing bug Rhodnius prolixus, events such as diuresis, antidiuresis, development and reproduction are triggered by blood feeding. Hence, these events can be accurately timed, facilitating physiological experiments. This, combined with its relatively big size, makes R. prolixus an excellent model in insect neuroendocrinological studies. The importance of R. prolixus as a Chagas' disease vector as much as an insect model has motivated the sequencing of its genome in recent years, facilitating genetic and molecular studies. Most crucial physiological processes are regulated by the neuroendocrine system, composed of neuropeptides and their receptors. The identification and characterization of neuropeptides and their receptors could be the first step to find targets for new insecticides. The sequences of 41 neuropeptide precursor genes and the receptors for most of them were identified in the R. prolixus genome. Functional information about many of these molecules was obtained, whereas many neuroendocrine systems are still unstudied in this model species. This review addresses the knowledge available to date regarding the structure, distribution, expression and physiological effects of neuropeptides in R. prolixus, and points to future directions in this research field.
Collapse
Affiliation(s)
- Sheila Ons
- Laboratory of Insects Neurobiology, National Center for Genomic Studies, Faculty of Exact Sciences, National University of La Plata, Bvd 120 1459, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Wegener C, Veenstra JA. Chemical identity, function and regulation of enteroendocrine peptides in insects. CURRENT OPINION IN INSECT SCIENCE 2015; 11:8-13. [PMID: 28285763 DOI: 10.1016/j.cois.2015.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 06/06/2023]
Abstract
How animals allocate energy and metabolic decisions are coordinated is a fundamental physiological question. Metabolic research is strongly driven by an increasing obesity rate in humans. For insects-which contain many pest species and disease vectors-the control of feeding is of agroeconomical and medical importance. Regulatory peptides have since long been in focus of metabolic research. In insects, major advances have been made recently, mostly due to research in the genetically tractable Drosophila melanogaster with focus on the central nervous system as a source of neuropeptides. Research on peptides produced by enteroendocrine cells remained peripheral, but this situation is about to change. This review highlights current knowledge and advances on the identity and role of enteroendocrine insect peptides.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Jan A Veenstra
- University of Bordeaux, INCIA UMR 5287 CNRS, Talence, France
| |
Collapse
|
10
|
Lange AB, Alim U, Vandersmissen HP, Mizoguchi A, Vanden Broeck J, Orchard I. The distribution and physiological effects of the myoinhibiting peptides in the kissing bug, rhodnius prolixus. Front Neurosci 2012; 6:98. [PMID: 22783161 PMCID: PMC3390896 DOI: 10.3389/fnins.2012.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/13/2012] [Indexed: 11/13/2022] Open
Abstract
The myoinhibiting peptides (MIPs), also designated as allatostatin-Bs or prothoracicostatic peptides in some insects, are neuropeptides that are characterized by two tryptophan (W) residues at the C-terminal, denoted as the W(X6)Wamide motif. They are believed to be the ancestral ligands for the Drosophila sex peptide (SP) receptor. Physiological functions of MIPs include the inhibition of contraction of insect visceral muscles, in addition to allatostatic and prothoracicostatic activities. The MIP precursor in Rhodnius prolixus encodes MIPs that have an unusual W(X7)Wamide motif. In the present study, MIP-like immunoreactivity was detected within neurons in the central nervous system and within the innervation to the salivary glands, hindgut, and female and male reproductive systems of adult R. prolixus. The effects of peptides with the unusual W(X7)Wamide motif (Rhopr-MIP-4) and with the typical W(X6)Wamide motif (Rhopr-MIP-7) were tested for physiological activity on R. prolixus hindgut contractions. Both peptides reduce the frequency and amplitude of hindgut contractions in a dose-dependent manner. In addition, both peptides activate the Drosophila SP receptor. The MIP/SP receptors are therefore activated by peptides with the unusual W(X7)Wamide motif.
Collapse
Affiliation(s)
- Angela B Lange
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | | | | | | | | | | |
Collapse
|
11
|
Takashima S, Younossi-Hartenstein A, Ortiz PA, Hartenstein V. A novel tissue in an established model system: the Drosophila pupal midgut. Dev Genes Evol 2011; 221:69-81. [PMID: 21556856 PMCID: PMC3950650 DOI: 10.1007/s00427-011-0360-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/23/2011] [Indexed: 01/20/2023]
Abstract
The Drosophila larval and adult midguts are derived from two populations of endodermal progenitors that separate from each other in the early embryo. As larval midgut cells differentiate into an epithelial layer, adult midgut progenitors (AMPs) remain as small clusters of proliferating, undifferentiated cells attached to the basal surface of the larval gut epithelium. During the first few hours of metamorphosis, AMPs merge into a continuous epithelial tube that overgrows the larval layer and differentiates into the adult midgut; at the same time, the larval midgut degenerates. As shown in this paper, there is a second, transient pupal midgut that develops from the AMPs at the beginning of metamorphosis and that intercalates between the adult and larval midgut epithelia. Cells of the transient pupal midgut form a multilayered tube that exhibits signs of differentiation, in the form of septate junctions and rudimentary apical microvilli. Some cells of the pupal midgut develop as endocrine cells. The pupal midgut remains closely attached to the degenerating larval midgut cells. Along with these cells, pupal midgut cells are sequestered into the lumen where they form the compact "yellow body." The formation of a pupal midgut has been reported from several other species and may represent a general feature of intestinal metamorphosis in insects.
Collapse
Affiliation(s)
- Shigeo Takashima
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
12
|
Neupert S, Russell WK, Russell DH, López JD, Predel R, Nachman RJ. Neuropeptides in Heteroptera: identification of allatotropin-related peptide and tachykinin-related peptides using MALDI-TOF mass spectrometry. Peptides 2009; 30:483-8. [PMID: 19084564 DOI: 10.1016/j.peptides.2008.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 11/18/2022]
Abstract
Recently, the peptidomic analysis of neuropeptides from the retrocerebral complex and abdominal perisympathetic organs of polyphagous stinkbugs (Pentatomidae) revealed the group-specific sequences of pyrokinins, CAPA peptides (CAPA-periviscerokinins/PVKs and CAPA-pyrokinin), myosuppressin, corazonin, adipokinetic hormone, and short neuropeptide F. In this study, we used mass spectrometric profiling of nervous tissue from the species-rich taxon Hemiptera to identify products of two previously unobserved neuropeptide genes from these species, namely allatotropin-related peptide (ATRP) and tachykinin-related peptides (TKRPs). Since neither TKRPs nor allatotropin are accumulated in neurohemal organs, immunocytochemical data were analyzed to find potential accumulation sites within the central nervous system. By mass spectrometry, TKRPs were found to be accumulated in the antennal lobes, and ATRP was identified in the most posterior region of the abdominal ventral nerve cord and fourth abdominal nerves. In addition to neuropeptides from stink bugs, TKRPs and ATRP were also identified from the distantly related bugs Oncopeltus fasciatus (Lygaeidae) and Pyrrhocoris apterus (Pyrrhocoridae). In total, six TKRPs and one ATRP from each species could be elucidated by tandem mass spectrometry. The ATRP of all species is sequence-identical with Locusta migratoria accessory gland myotropin-1 (Lom-AG-MT-1), a member of the highly conserved insect allatotropin family.
Collapse
Affiliation(s)
- Susanne Neupert
- Areawide Pest Management Research, Southern Plains Agricultural Research Center, USDA, 2881 F&B Road, College Station, TX 77845, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Brugge VAT, Schooley DA, Orchard I. Amino acid sequence and biological activity of a calcitonin-like diuretic hormone (DH31) from Rhodnius prolixus. ACTA ACUST UNITED AC 2008; 211:382-90. [PMID: 18203994 DOI: 10.1242/jeb.013771] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Diuresis in the blood-gorging hemipteran Rhodnius prolixus is under neurohormonal control and involves a variety of processes and tissues. These include ion and water movement across the epithelium of the crop and the Malpighian tubules, and muscle contractions of the crop, hindgut and dorsal vessel, which facilitate mixing of the blood-meal, mixing of the haemolymph, as well as the expulsion of waste. One of the neurohormones that might play a role in this rapid diuresis belongs to the calcitonin-like diuretic hormone (DH(31)) family of insect peptides. Previously we have demonstrated the presence of DH(31)-like peptides in the central nervous system (CNS) and gut of R. prolixus 5th instars. In the present work, a DH(31) from the CNS of 5th instar R. prolixus was isolated using reversed-phase liquid chromatography (RPLC), monitored with an enzyme-linked immunosorbent assay (ELISA) combined with matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry, and sequenced using tandem mass spectrometry and Edman degradation. This neuropeptide is the first to be sequenced in R. prolixus and has a sequence identical to that found previously for Dippu-DH(31) from the cockroach Diploptera punctata. In previous studies testing Rhopr/Dippu-DH(31) in Malpighian tubule secretion assays, we demonstrated increases in the rate of secretion that were small, relative to that induced by serotonin, but nevertheless 14-fold over baseline. In the present study, we investigated second messenger pathways in response to Rhopr/Dippu-DH(31) and found no increase or decrease in cyclic adenosine monophosphate (cyclic AMP) content of the Malpighian tubules. DH(31)-like immunoreactivity is present over the dorsal hindgut, anterior dorsal vessel and dorsal diaphragm, and bioassays of the R. prolixus dorsal vessel and hindgut indicate that Rhopr/Dippu-DH(31) increases the frequency of muscle contractions of both tissues. Second messenger pathways were also investigated for the dorsal vessel and hindgut.
Collapse
Affiliation(s)
- Victoria A Te Brugge
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | | | | |
Collapse
|
14
|
Winther AME, Acebes A, Ferrús A. Tachykinin-related peptides modulate odor perception and locomotor activity in Drosophila. Mol Cell Neurosci 2006; 31:399-406. [PMID: 16289899 DOI: 10.1016/j.mcn.2005.10.010] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 10/09/2005] [Accepted: 10/14/2005] [Indexed: 11/16/2022] Open
Abstract
The invertebrate tachykinin-related peptides (TKRPs) constitute a conserved family, structurally related to the mammalian tachykinins, including members such as substance P and neurokinins A and B. Although their expression has been documented in the brains of insects and mammals, their neural functions remain largely unknown, particularly in behavior. Here, we have studied the role of TKRPs in Drosophila. We have analyzed the olfactory perception and the locomotor activity of individuals in which TKRPs are eliminated in the nervous system specifically, by using RNAi constructs to silence gene expression. The perception of specific odorants and concentrations is modified towards a loss of sensitivity, thus resulting in a significant change of the behavioral response towards indifference. In locomotion assays, the TKRP-deficient flies show hyperactivity. We conclude that these peptides are modulators of olfactory perception and locomotion activity in agreement with their abundant expression in the olfactory lobes and central complex. In these brain centers, TKRPs seem to enhance the regulatory inhibition of the neurons in which they are expressed.
Collapse
Affiliation(s)
- Asa M E Winther
- Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | |
Collapse
|
15
|
Te Brugge VA, Lombardi VC, Schooley DA, Orchard I. Presence and activity of a Dippu-DH31-like peptide in the blood-feeding bug, Rhodnius prolixus. Peptides 2005; 26:29-42. [PMID: 15626502 DOI: 10.1016/j.peptides.2004.08.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
The blood-feeding bug, Rhodnius prolixus, ingests large blood meals, then undergoes a period of rapid diuresis which is under neurohormonal control. In both cockroach (Diploptera punctata) and fruit fly (Drosophila melanogaster) a calcitonin-like DH31 neuropeptide has been identified [Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 2001;204:1795-804; Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, et al. Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proc Natl Acad Sci USA 2000;97:6469-74] and demonstrated to be active on Malpighian tubule secretion [Coast GM, Webster SG, Schegg KM, Tobe SS, Schooley DA. The Drosophila melanogaster homologue of an insect calcitonin-like diuretic peptide stimulates V-ATPase activity in fruit fly Malpighian tubules. J Exp Biol 2001;204:1795-804; Furuya K, Milchak RJ, Schegg KM, Zhang J, Tobe SS, Coast GM, et al. Cockroach diuretic hormones: characterization of a calcitonin-like peptide in insects. Proc Natl Acad Sci USA 2000;97:6469-74]. Using an antibody raised against D. punctata (Dippu) DH31, we demonstrate the presence of Dippu-DH31-like immunoreactivity in the CNS, salivary glands, hindgut and neurohemal sites of 5th instar Rhodnius. Double-label immunohistochemistry for Dippu-DH31-like and serotonin-like immunoreactivity demonstrates some co-localization of these factors in cells of the mesothoracic ganglionic mass (MTGM) and in neurohemal sites on the abdominal nerves. When tested on Rhodnius 5th instar Malpighian tubules, Dippu-DH31 stimulated minor increases in rate of secretion. Dippu-DH31 tested in combination with serotonin resulted in increases in the rate of secretion which were at least additive.
Collapse
Affiliation(s)
- V A Te Brugge
- Department of Biology, University of Toronto, Mississauga, Ont., Canada L5L 1C6.
| | | | | | | |
Collapse
|