1
|
Dallagnol JCC, Volkovich M, Chatenet D, Allen BG, Hébert TE. G Protein-Biased Agonists for Intracellular Angiotensin Receptors Promote Collagen Secretion in Myofibroblasts. ACS Chem Biol 2023; 18:2050-2062. [PMID: 37611227 DOI: 10.1021/acschembio.3c00319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Photoactivatable ligands remain valuable tools to study the spatiotemporal aspects of cellular signaling. However, the synthesis, handling, and biological validation of such compounds remain challenging, especially when dealing with peptides. We report an optimized synthetic strategy, where laborious preparation of dimethoxy-nitrobenzyl-tyrosine building blocks was replaced by direct functionalization of amino acid side chains while peptides remained coupled to resin, reducing both preparation time and cost. Our caged peptides were designed to investigate cellular responses mediated by intracellular angiotensin II receptors (iATR) upon interaction with known biased and unbiased ligands. The pathophysiological roles of iATRs remain poorly understood, and we sought to develop ligands to explore this. Initial validation showed that our caged ligands undergo rapid photolysis and produced functionally active peptides upon UV exposure. We also show, for the first time, that different biased ligands (β-arrestin- vs G protein-biased analogues) evoked distinct responses when uncaged in adult rat myofibroblasts. Intracellularly targeted versions of Ang II (unbiased) or G protein-biased analogues (TRV055, TRV056) were more effective than β-arrestin-biased Ang II analogues (SI, TRV026, and TRV27) in inducing collagen secretion, suggesting a divergent role in regulating the fibrotic response.
Collapse
Affiliation(s)
- Juliana C C Dallagnol
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Laval H7V 5B7, Québec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Québec, Canada
- Montreal Heart Institute, Montréal H1T 1C8, Québec, Canada
| | - Mikhail Volkovich
- Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Québec, Canada
- Montreal Heart Institute, Montréal H1T 1C8, Québec, Canada
| | - David Chatenet
- Institut National de la Recherche Scientifique, Centre Armand-Frappier Santé Biotechnologie, Groupe de Recherche en Ingénierie des Peptides et en Pharmacothérapie (GRIPP), Université du Québec, Laval H7V 5B7, Québec, Canada
| | - Bruce G Allen
- Montreal Heart Institute, Montréal H1T 1C8, Québec, Canada
- Departments of Biochemistry and Molecular Medicine, Medicine, Pharmacology and Physiology, Université de Montréal, Montréal H3C 3J7, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal H3G 1Y6, Québec, Canada
| |
Collapse
|
2
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
3
|
Gandioso A, Cano M, Massaguer A, Marchán V. A Green Light-Triggerable RGD Peptide for Photocontrolled Targeted Drug Delivery: Synthesis and Photolysis Studies. J Org Chem 2016; 81:11556-11564. [PMID: 27934458 DOI: 10.1021/acs.joc.6b02415] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe for the first time the synthesis and photochemical properties of a coumarin-caged cyclic RGD peptide and demonstrate that uncaging can be efficiently performed with biologically compatible green light. This was accomplished by using a new dicyanocoumarin derivative (DEAdcCE) for the protection of the carboxyl function at the side chain of the aspartic acid residue, which was selected on the basis of Fmoc-tBu SPPS compatibility and photolysis efficiency. The shielding effect of a methyl group incorporated in the coumarin derivative near the ester bond linking both moieties in combination with the use of acidic additives such as HOBt or Oxyma during the basic Fmoc-removal treatment were found to be very effective for minimizing aspartimide-related side reactions. In addition, a conjugate between the dicyanocoumarin-caged cyclic RGD peptide and ruthenocene, which was selected as a metallodrug model cargo, has been synthesized and characterized. The fact that green-light triggered photoactivation can be efficiently performed both with the caged peptide and with its ruthenocenoyl bioconjugate reveals great potential for DEAdcCE-caged peptide sequences as selective drug carriers in the context of photocontrolled targeted anticancer strategies.
Collapse
Affiliation(s)
- Albert Gandioso
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona , E-08028 Barcelona, Spain
| | - Marc Cano
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona , E-08028 Barcelona, Spain
| | - Anna Massaguer
- Departament de Biologia, Universitat de Girona , E-17071 Girona, Spain
| | - Vicente Marchán
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, IBUB, Universitat de Barcelona , E-08028 Barcelona, Spain
| |
Collapse
|
4
|
Tadevosyan A, Villeneuve LR, Fournier A, Chatenet D, Nattel S, Allen BG. Caged ligands to study the role of intracellular GPCRs. Methods 2015. [PMID: 26196333 DOI: 10.1016/j.ymeth.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In addition to cell surface membranes, numerous G protein-coupled receptors (GPCRs) are located on intracellular membranes including the nuclear envelope. Although the role of numerous GPCRs at the cell surface has been well characterized, the physiological function of these same receptors located on intracellular membranes remains to be determined. Here, we employ a novel caged Ang-II analog, cAng-II, to compare the effects of the activation of cell surface versus intracellular angiotensin receptors in intact cardiomyocytes. When added extracellularly to HEK 293 cells, Ang-II and photolysed cAng-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R). In contrast unphotolysed cAng-II did not. Cellular uptake of cAng-II was 6-fold greater than that of Ang-II and comparable to the HIV TAT(48-60) peptide. Intracellular photolysis of cAng-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was greater than that induced by extracellular application of Ang-II. We conclude that cell-permeable ligands that can access intracellular GPCRs may evoke responses distinct from those with access restricted to the same receptor located on the cell surface.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada
| | | | - Alain Fournier
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, Université du Québec, Canada; Laboratoire International Associé Samuel de Champlain, Canada
| | - Stanley Nattel
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada.
| | - Bruce G Allen
- Department of Medicine, Université de Montréal, Canada; Montreal Heart Institute, Canada; Department of Pharmacology and Therapeutics, McGill University, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, Canada.
| |
Collapse
|
5
|
Tadevosyan A, Létourneau M, Folch B, Doucet N, Villeneuve LR, Mamarbachi AM, Pétrin D, Hébert TE, Fournier A, Chatenet D, Allen BG, Nattel S. Photoreleasable ligands to study intracrine angiotensin II signalling. J Physiol 2015; 593:521-39. [PMID: 25433071 DOI: 10.1113/jphysiol.2014.279109] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS The renin-angiotensin system plays a key role in cardiovascular physiology and its overactivation has been implicated in the pathogenesis of several major cardiovascular diseases. There is growing evidence that angiotensin II (Ang-II) may function as an intracellular peptide to activate intracellular/nuclear receptors and their downstream signalling effectors independently of cell surface receptors. Current methods used to study intracrine Ang-II signalling are limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we present novel photoreleasable Ang-II analogues used to probe intracellular actions with spatial and temporal precision. The photorelease of intracellular Ang-II causes nuclear and cytosolic calcium mobilization and initiates the de novo synthesis of RNA in cardiac cells, demonstrating the application of the method. ABSTRACT Several lines of evidence suggest that intracellular angiotensin II (Ang-II) contributes to the regulation of cardiac contractility, renal salt reabsorption, vascular tone and metabolism; however, work on intracrine Ang-II signalling has been limited to indirect approaches because of a lack of selective intracellularly-acting probes. Here, we aimed to synthesize and characterize cell-permeant Ang-II analogues that are inactive without uncaging, but release active Ang-II upon exposure to a flash of UV-light, and act as novel tools for use in the study of intracrine Ang-II physiology. We prepared three novel caged Ang-II analogues, [Tyr(DMNB)(4)]Ang-II, Ang-II-ODMNB and [Tyr(DMNB)(4)]Ang-II-ODMNB, based upon the incorporation of the photolabile moiety 4,5-dimethoxy-2-nitrobenzyl (DMNB). Compared to Ang-II, the caged Ang-II analogues showed 2-3 orders of magnitude reduced affinity toward both angiotensin type-1 (AT1R) and type-2 (AT2R) receptors in competition binding assays, and greatly-reduced potency in contraction assays of rat thoracic aorta. After receiving UV-irradiation, all three caged Ang-II analogues released Ang-II and potently induced the contraction of rat thoracic aorta. [Tyr(DMNB)(4)]Ang-II showed the most rapid photolysis upon UV-irradiation and was the focus of subsequent characterization. Whereas Ang-II and photolysed [Tyr(DMNB)(4)]Ang-II increased ERK1/2 phosphorylation (via AT1R) and cGMP production (AT2R), caged [Tyr(DMNB)(4)]Ang-II did not. Cellular uptake of [Tyr(DMNB)(4)]Ang-II was 4-fold greater than that of Ang-II and significantly greater than uptake driven by the positive-control HIV TAT(48-60) peptide. Intracellular photolysis of [Tyr(DMNB)(4)]Ang-II induced an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n), and initiated 18S rRNA and nuclear factor kappa B mRNA synthesis in adult cardiac cells. We conclude that caged Ang-II analogues represent powerful new tools for use in the selective study of intracrine signalling via Ang-II.
Collapse
Affiliation(s)
- Artavazd Tadevosyan
- Department of Medicine, Université de Montréal, Montréal, Québec, Canada; Montreal Heart Institute, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chatenet D, Bourgault S, Fournier A. Design and application of light-activated probes for cellular signaling. Methods Mol Biol 2015; 1234:17-30. [PMID: 25304345 DOI: 10.1007/978-1-4939-1755-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multiple reports have described the presence of functional G protein-coupled receptors (GPCRs) in the perinuclear/nuclear membranes of many cell types where they are able to modulate nuclear Ca(2+) influx, transcription initiation, and gene expression. Because GPCRs represent "some of the most promising targets for drug development" a better understanding of their roles, not only at the cell membrane but also at the nuclear level, in healthy and disease states, will certainly generate new avenues for therapeutic intervention. The photo-triggered release of biologically active compounds has been regarded as one of the most effective methods for inducing an in vitro-controlled biochemical or physiological response. Here, we describe various methodologies and alternatives related to the conception of inert biologically active peptides through the incorporation of photo-triggered groups at key positions of the native peptide sequence.
Collapse
Affiliation(s)
- David Chatenet
- INRS - Institut Armand-Frappier, Institut National de la Recherche Scientifique, Ville de Laval, QC, Canada, H7V 1B7,
| | | | | |
Collapse
|
7
|
Lee HM, Larson DR, Lawrence DS. Illuminating the chemistry of life: design, synthesis, and applications of "caged" and related photoresponsive compounds. ACS Chem Biol 2009; 4:409-27. [PMID: 19298086 DOI: 10.1021/cb900036s] [Citation(s) in RCA: 369] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biological systems are characterized by a level of spatial and temporal organization that often lies beyond the grasp of present day methods. Light-modulated bioreagents, including analogs of low molecular weight compounds, peptides, proteins, and nucleic acids, represent a compelling strategy to probe, perturb, or sample biological phenomena with the requisite control to address many of these organizational complexities. Although this technology has created considerable excitement in the chemical community, its application to biological questions has been relatively limited. We describe the challenges associated with the design, synthesis, and use of light-responsive bioreagents; the scope and limitations associated with the instrumentation required for their application; and recent chemical and biological advances in this field.
Collapse
Affiliation(s)
- Hsien-Ming Lee
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| | - Daniel R. Larson
- Department of Anatomy and Structural Biology, The Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - David S. Lawrence
- Departments of Chemistry, Medicinal Chemistry & Natural Products, and Pharmacology, The University of North Carolina, Chapel Hill, North Carolina 27599-3290
| |
Collapse
|
8
|
Abstract
Biologically active compounds which are light-responsive offer experimental possibilities which are otherwise very difficult to achieve. Since light can be manipulated very precisely, for example, with lasers and microscopes rapid jumps in concentration of the active form of molecules are possible with exact control of the area, time, and dosage. The development of such strategies started in the 1970s. This review summarizes new developments of the last five years and deals with "small molecules", proteins, and nucleic acids which can either be irreversibly activated with light (these compounds are referred to as "caged compounds") or reversibly switched between an active and an inactive state.
Collapse
Affiliation(s)
- Günter Mayer
- Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
9
|
Bourgault S, Létourneau M, Fournier A. Development of photolabile caged analogs of endothelin-1. Peptides 2007; 28:1074-82. [PMID: 17400333 DOI: 10.1016/j.peptides.2007.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 02/17/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
Photoactivable caged analogs of endothelin-1 (ET-1) were obtained after derivatization with the photolabile 4,5-dimethoxynitrobenzyl (DMNB) group. This was achieved by the incorporation of N-alpha-Fmoc caged building blocks of Lys, Asp, Glu and Tyr during the solid phase peptide synthesis step. The C-terminal carboxylic function was also derivatized. However, difficulties were encountered with the introduction of the Asp and Glu photoactivable building blocks. As a matter of fact, formation of an aminosuccinyl derivative, through cyclization of the Asp(ODMNB) residue, and the formation of a pyrrolidone ring from the Glu(ODMNB) residue were highly favored by the electronic properties of the photocleavable function. ET-1 analogs were also tested in the ET(A) and ET(B) paradigms and specific pharmacological profiles were obtained for each peptide.
Collapse
Affiliation(s)
- S Bourgault
- Laboratoire d'Etudes Moléculaires et Pharmacologiques des Peptides, INRS - Institut Armand-Frappier, Institut National de la Recherche Scientifique, 245 Boul. Hymus, Pointe-Claire, Que., Canada H9R 1G6.
| | | | | |
Collapse
|
10
|
|