1
|
Hollmann A, Cardoso NP, Espeche JC, Maffía PC. Review of antiviral peptides for use against zoonotic and selected non-zoonotic viruses. Peptides 2021; 142:170570. [PMID: 34000327 PMCID: PMC8120785 DOI: 10.1016/j.peptides.2021.170570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/23/2021] [Accepted: 05/04/2021] [Indexed: 12/15/2022]
Abstract
Viruses remain one of the leading causes of animal and human disease. Some animal viral infections spread sporadically to human populations, posing a serious health risk. Particularly the emerging viral zoonotic diseases such as the novel, zoonotic coronavirus represent an actual challenge for the scientific and medical community. Besides human health risks, some animal viral infections, although still not zoonotic, represent important economic loses to the livestock industry. Viral infections pose a genuine concern for which there has been an increasing interest for new antiviral molecules. Among these novel compounds, antiviral peptides have been proposed as promising therapeutic options, not only for the growing body of evidence showing hopeful results but also due to the many adverse effects of chemical-based drugs. Here we review the current progress, key targets and considerations for the development of antiviral peptides (AVPs). The review summarizes the state of the art of the AVPs tested in zoonotic (coronaviruses, Rift Valley fever viruses, Eastern Equine Encephalitis Virus, Dengue and Junín virus) and also non-zoonotic farm animal viruses (avian and cattle viruses). Their molecular target, amino acid sequence and mechanism of action are summarized and reviewed. Antiviral peptides are currently on the cutting edge since they have been reported to display anti-coronavirus activity. Particularly, the review will discuss the specific mode of action of AVPs that specifically inhibit the fusion of viral and host-cell membranes for SARS-CoV-2, showing in detail some important features of the fusion inhibiting peptides that target the spike protein of these risky viruses.
Collapse
Affiliation(s)
- Axel Hollmann
- Laboratorio de Compuestos Bioactivos, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206, Santiago del Estero, Argentina; Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Nancy P Cardoso
- Instituto de Virología e Innovaciones Tecnológicas, IVIT - Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina
| | - Juan C Espeche
- Laboratorio de Compuestos Bioactivos, Centro de Investigaciones en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9, Km 1125, 4206, Santiago del Estero, Argentina
| | - Paulo C Maffía
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Av. Vergara 2222, Villa Tesei, Hurlingham, B1688GEZ, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Wei J, Hameed M, Wang X, Zhang J, Guo S, Anwar MN, Pang L, Liu K, Li B, Shao D, Qiu Y, Zhong D, Zhou B, Ma Z. Antiviral activity of phage display-selected peptides against Japanese encephalitis virus infection in vitro and in vivo. Antiviral Res 2019; 174:104673. [PMID: 31812636 DOI: 10.1016/j.antiviral.2019.104673] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022]
Abstract
Japanese Encephalitis virus (JEV) is a zoonotic flavivirus that is the most significant etiological agent of childhood viral neurological infections. However, no specific antiviral drug is currently available to treat JEV infections. The JEV envelope (E) protein is a class II viral fusion protein that mediates host cell entry, making interference with the interaction between the E protein of JEV and its cognate receptors an attractive strategy for anti-JEV drug development. In this study, we identified a peptide derived from a phage display peptide library against the E protein of JEV, designated P1, that potentially inhibits in vitro and in vivo JEV infections. P1 inhibits JEV infection in BHK-21 cells with 50% inhibitory capacity at a concentration of 35.9 μM. The time-of-addition assay indicates that JEV replication is significantly inhibited during pre-infection and co-infection of P1 with JEV while post-infection treatments with P1 have very little impact on JEV proliferation, showing that P1 inhibits JEV infection at early stages and indicating the potential prophylactic effect of P1. We adapted an in vitro BiFC assay system and demonstrated that P1 interacts with JEV E proteins and blocks their entry into cells. We also evaluated the therapeutic efficacy of P1 in a lethal JEV mouse model exhibiting systemic and brain infections. Interestingly, P1 treatment protected C57BL/6 mice against mortality, markedly reduced the viral loads in blood and brain, and diminished the histopathological lesions in the brain cells. In addition to controlling systemic infection, P1 has a very low level of cytotoxicity and acts in a sequence-specific manner, as scrambled peptide sP1 does not show any antiviral activity. In conclusion, our in vitro and in vivo experimental findings show that P1 possesses antiviral activity against JEV infections, is safe to use, and has potential for further development as an antiviral treatment against JEV infections.
Collapse
Affiliation(s)
- Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China; Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, People's Republic of China
| | - Shuang Guo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Linlin Pang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China
| | - Dengke Zhong
- Shanghai Vocational and Technical College of Agriculture and Forestry, Shanghai, 201600, People's Republic of China.
| | - Bin Zhou
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, 210095, People's Republic of China.
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
3
|
Hou P, Zhao G, He C, Wang H, He H. Biopanning of polypeptides binding to bovine ephemeral fever virus G 1 protein from phage display peptide library. BMC Vet Res 2018; 14:3. [PMID: 29301517 PMCID: PMC5753476 DOI: 10.1186/s12917-017-1315-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022] Open
Abstract
Background The bovine ephemeral fever virus (BEFV) glycoprotein neutralization site 1 (also referred as G1 protein), is a critical protein responsible for virus infectivity and eliciting immune-protection, however, binding peptides of BEFV G1 protein are still unclear. Thus, the aim of the present study was to screen specific polypeptides, which bind BEFV G1 protein with high-affinity and inhibit BEFV replication. Methods The purified BEFV G1 was coated and then reacted with the M13-based Ph.D.-7 phage random display library. The peptides for target binding were automated sequenced after four rounds of enrichment biopanning. The amino acid sequences of polypeptide displayed on positive clones were deduced and the affinity of positive polypeptides with BEFV G1 was assayed by ELISA. Then the roles of specific G1-binding peptides in the context of BEFV infection were analyzed. Results The results showed that 27 specific peptide ligands displaying 11 different amino acid sequences were obtained, and the T18 and T25 clone had a higher affinity to G1 protein than the other clones. Then their antiviral roles of two phage clones (T25 and T18) showed that both phage polypeptide T25 and T18 exerted inhibition on BEFV replication compared to control group. Moreover, synthetic peptide based on T18 (HSIRYDF) and T25 (YSLRSDY) alone or combined use on BEFV replication showed that the synthetic peptides could effectively inhibit the formation of cytopathic plaque and significantly inhibit BEFV RNA replication in a dose-dependent manner. Conclusion Two antiviral peptide ligands binding to bovine ephemeral fever virus G1 protein from phage display peptide library were identified, which may provide a potential research tool for diagnostic reagents and novel antiviral agents. Electronic supplementary material The online version of this article (10.1186/s12917-017-1315-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peili Hou
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan City, Shandong Province, China
| | - Guimin Zhao
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan City, Shandong Province, China
| | - Chengqiang He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan City, Shandong Province, China
| | - Hongmei Wang
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan City, Shandong Province, China.
| | - Hongbin He
- Key Laboratory of Animal Resistant Biology of Shandong, Ruminant Disease Research Center, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan City, Shandong Province, China.
| |
Collapse
|
4
|
de la Guardia C, Quijada M, Lleonart R. Phage-Displayed Peptides Selected to Bind Envelope Glycoprotein Show Antiviral Activity against Dengue Virus Serotype 2. Adv Virol 2017; 2017:1827341. [PMID: 29081802 PMCID: PMC5610824 DOI: 10.1155/2017/1827341] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/26/2017] [Indexed: 02/06/2023] Open
Abstract
Dengue virus is a growing public health threat that affects hundreds of million peoples every year and leave huge economic and social damage. The virus is transmitted by mosquitoes and the incidence of the disease is increasing, among other causes, due to the geographical expansion of the vector's range and the lack of effectiveness in public health interventions in most prevalent countries. So far, no highly effective vaccine or antiviral has been developed for this virus. Here we employed phage display technology to identify peptides able to block the DENV2. A random peptide library presented in M13 phages was screened with recombinant dengue envelope and its fragment domain III. After four rounds of panning, several binding peptides were identified, synthesized, and tested against the virus. Three peptides were able to block the infectivity of the virus while not being toxic to the target cells. Blind docking simulations were done to investigate the possible mode of binding, showing that all peptides appear to bind domain III of the protein and may be mostly stabilized by hydrophobic interactions. These results are relevant to the development of novel therapeutics against this important virus.
Collapse
Affiliation(s)
- Carolina de la Guardia
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Building 219, Ciudad del Saber, Apartado 0843-01103, Panamá, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, India
| | - Mario Quijada
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Building 219, Ciudad del Saber, Apartado 0843-01103, Panamá, Panama
| | - Ricardo Lleonart
- Center of Cellular and Molecular Biology of Diseases, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Building 219, Ciudad del Saber, Apartado 0843-01103, Panamá, Panama
| |
Collapse
|
5
|
Wang H, Liu R, Cui J, Deng S, Xie J, Nin Z, Zhang G. Characterization and utility of phages bearing peptides with affinity to porcine reproductive and respiratory syndrome virus nsp7 protein. J Virol Methods 2015; 222:231-41. [PMID: 25944706 DOI: 10.1016/j.jviromet.2015.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/02/2015] [Accepted: 04/23/2015] [Indexed: 12/18/2022]
Abstract
High-affinity peptides to porcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein (nsp) 7 were identified using phage-display technology. Five 12-amino-acid peptide sequences were identified after six rounds of biopanning. A putative CD##WC motif was found in two different consensus peptides borne by phages 4 and 5. The peptides borne by phages 4, 5, and 6 were synthesized for subsequent experiments, according to the results of the binding assays. Immunofluorescence assay revealed that all these peptides recognized nsp7 in PRRSV-infected cells. Furthermore, the peptides demonstrated antiviral activities, with peptides 5 and 6 showing effective inhibition. Early peptide stimulation was associated with strong antiviral activity, and the inhibitory effects of the peptides were dose-dependent at 36 and 48 h post-infection. Peptide 5 was selected to detect the intracellular localization of nsp7 by confocal microscopy. This peptide had a similar effect to anti-nsp7 monoclonal antibody on nsp7. These results suggest that high-affinity peptides to PRRSV nsp7 could mimic the potential of nsp7 antibody as a diagnostic reagent for virus detection. Moreover, the peptides selected in this study represented a potentially effective antiviral candidate to inhibit PRRSV.
Collapse
Affiliation(s)
- Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Rongchang Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Jin Cui
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Shengchao Deng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Jiexiong Xie
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Zhangyong Nin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province 510642, People's Republic of China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province 510642, People's Republic of China; Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, Guangzhou, Guangdong Province 510642, People's Republic of China; MOA Key Laboratory of Animal Vaccine Development, Guangzhou, Guangdong Province 510642, People's Republic of China.
| |
Collapse
|
6
|
Muhamad A, Ho KL, Rahman MBA, Uhrín D, Tan WS. Solution structure and in silico binding of a cyclic peptide with hepatitis B surface antigen. Chem Biol Drug Des 2014; 81:784-94. [PMID: 23405984 DOI: 10.1111/cbdd.12120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/21/2013] [Accepted: 02/09/2013] [Indexed: 02/06/2023]
Abstract
A specific ligand targeting the immunodominant region of hepatitis B virus is desired in neutralizing the infectivity of the virus. In a previous study, a disulfide constrained cyclic peptide cyclo S(1) ,S(9) Cys-Glu-Thr-Gly-Ala-Lys-Pro-His-Cys (S(1) , S(9) -cyclo-CETGAKPHC) was isolated from a phage displayed cyclic peptide library using an affinity selection method against hepatitis B surface antigen. The cyclic peptide binds tightly to hepatitis B surface antigen with a relative dissociation constant (KD (rel) ) of 2.9 nm. The binding site of the peptide was located at the immunodominant region on hepatitis B surface antigen. Consequently, this study was aimed to elucidate the structure of the cyclic peptide and its interaction with hepatitis B surface antigen in silico. The solution structure of this cyclic peptide was solved using (1) H, (13) C, and (15) N NMR spectroscopy and molecular dynamics simulations with NMR-derived distance and torsion angle restraints. The cyclic peptide adopted two distinct conformations due to the isomerization of the Pro residue with one structured region in the ETGA sequence. Docking studies of the peptide ensemble with a model structure of hepatitis B surface antigen revealed that the cyclic peptide can potentially be developed as a therapeutic drug that inhibits the virus-host interactions.
Collapse
Affiliation(s)
- Azira Muhamad
- Institute of Bioscience, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | | | | | | | | |
Collapse
|
7
|
Liu K, Feng X, Ma Z, Luo C, Zhou B, Cao R, Huang L, Miao D, Pang R, He D, Lian X, Chen P. Antiviral activity of phage display selected peptides against Porcine reproductive and respiratory syndrome virus in vitro. Virology 2012; 432:73-80. [PMID: 22743126 DOI: 10.1016/j.virol.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/07/2012] [Accepted: 05/14/2012] [Indexed: 11/18/2022]
Abstract
Porcine reproductive and respiratory syndrome is an important infectious disease of pigs and has a significant harmful effect on the livestock industry, especially in China. PRRSV ORF1b gene encodes primary proteins which play a vital role during PRRSV replication. In this paper, various 12-amino-acid peptides were displayed. These peptides could bind to the polymerase and helicase of PRRSV ORF1b protein, respectively, in which p9 exerted the highest antiviral activity with an IC50 of 56 μM, and the minimum toxicity to cells. It was proved that p9 inhibited PRRSV replication in infected MARC-145 cells in a dose-dependent manner, and the amino acid sequence of HRILMRIR was important for antiviral activity of p9. Also, p9 could bind to the cell membrane and penetrated into cells. These result suggested that p9 might be a potential therapeutic drug for PRRSV infection.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Animal Disease Diagnostic & Immunology, Department of Veterinary Medicine College, Nanjing Agricultural University, YiFu 4037, Nanjing, Jiangsu 210095, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Castel G, Chtéoui M, Heyd B, Tordo N. Phage display of combinatorial peptide libraries: application to antiviral research. Molecules 2011; 16:3499-518. [PMID: 21522083 PMCID: PMC6263255 DOI: 10.3390/molecules16053499] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/14/2022] Open
Abstract
Given the growing number of diseases caused by emerging or endemic viruses, original strategies are urgently required: (1) for the identification of new drugs active against new viruses and (2) to deal with viral mutants in which resistance to existing antiviral molecules has been selected. In this context, antiviral peptides constitute a promising area for disease prevention and treatment. The identification and development of these inhibitory peptides require the high-throughput screening of combinatorial libraries. Phage-display is a powerful technique for selecting unique molecules with selective affinity for a specific target from highly diverse combinatorial libraries. In the last 15 years, the use of this technique for antiviral purposes and for the isolation of candidate inhibitory peptides in drug discovery has been explored. We present here a review of the use of phage display in antiviral research and drug discovery, with a discussion of optimized strategies combining the strong screening potential of this technique with complementary rational approaches for identification of the best target. By combining such approaches, it should be possible to maximize the selection of molecules with strong antiviral potential.
Collapse
Affiliation(s)
| | | | | | - Noël Tordo
- Unité Postulante des Stratégies Antivirales, CNRS URA-3015, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|