1
|
Pituitary Pars Intermedia Dysfunction (PPID) in Horses. Vet Sci 2022; 9:vetsci9100556. [PMID: 36288169 PMCID: PMC9611634 DOI: 10.3390/vetsci9100556] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Substantial morbidity results from pituitary pars intermedia dysfunction (PPID) which is often underestimated by owners and veterinarians. Clinical signs, pathophysiology, diagnostic tests, and treatment protocols of this condition are reviewed. The importance of improved recognition of early clinical signs and diagnosis are highlighted, as initiation of treatment will result in improved quality of life. Future research should be targeted at improving the accuracy of the diagnosis of PPID, as basal adrenocorticotropic hormone (ACTH) concentration can lack sensitivity and thyrotropin releasing hormone (TRH) used to assess ACTH response to TRH stimulation is not commercially available as a sterile registered product in many countries. The relationship between PPID and insulin dysregulation and its association with laminitis, as well as additional management practices and long-term responses to treatment with pergolide also require further investigation.
Collapse
|
2
|
Mercer DK, O'Neil DA. Innate Inspiration: Antifungal Peptides and Other Immunotherapeutics From the Host Immune Response. Front Immunol 2020; 11:2177. [PMID: 33072081 PMCID: PMC7533533 DOI: 10.3389/fimmu.2020.02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this review is to describe antifungal therapeutic candidates in preclinical and clinical development derived from, or directly influenced by, the immune system, with a specific focus on antimicrobial peptides (AMP). Although the focus of this review is AMP with direct antimicrobial effects on fungi, we will also discuss compounds with direct antifungal activity, including monoclonal antibodies (mAb), as well as immunomodulatory molecules that can enhance the immune response to fungal infection, including immunomodulatory AMP, vaccines, checkpoint inhibitors, interferon and colony stimulating factors as well as immune cell therapies. The focus of this manuscript will be a non-exhaustive review of antifungal compounds in preclinical and clinical development that are based on the principles of immunology and the authors acknowledge the incredible amount of in vitro and in vivo work that has been conducted to develop such therapeutic candidates.
Collapse
|
3
|
Antiinflammatory peptides: current knowledge and promising prospects. Inflamm Res 2018; 68:125-145. [PMID: 30560372 DOI: 10.1007/s00011-018-1208-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/19/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inflammation is part of the regular host reaction to injury or infection caused by toxic factors, pathogens, damaged cells, irritants, and allergens. Antiinflammatory peptides (AIPs) are present in all living organisms, and many peptides from herbal, mammalian, bacterial, and marine origins have been shown to have antimicrobial and/or antiinflammatory properties. METHODS In this study, we investigated the effects of antiinflammatory peptides on inflammation, and highlighted the underlying mechanisms responsible for these effects. RESULTS In multicellular organisms, including humans, AIPs constitute an essential part of their immune system. In addition, numerous natural and synthetic AIPs are effective immunomodulators and can interfere with signal transduction pathways involved in inflammatory cytokine expression. Among them, some peptides such as antiflammin, N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP), and those derived from velvet antler proteins, bee venom, horse fly salivary gland, and bovine β-casein have received considerable attention over the past few years. CONCLUSION This article presents an overview on the major properties and mechanisms of action associated with AIPs as immunomodulatory, chemotactic, antioxidant, and antimicrobial agents. In addition, the results of various studies dealing with effects of AIPs on numerous classical models of inflammation are reviewed and discussed.
Collapse
|
4
|
Neutrophil function in healthy aged horses and horses with pituitary dysfunction. Vet Immunol Immunopathol 2015; 165:99-106. [PMID: 25962580 DOI: 10.1016/j.vetimm.2015.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/01/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022]
Abstract
Immunosuppression leading to opportunist bacterial infection is a well-recognized sequela of equine pituitary pars intermedia dysfunction (PPID). The mechanisms responsible for immune dysfunction in PPID however, are as of yet poorly characterized. Horses with PPID have high concentrations of hormones known to impact immune function including α-melanocyte stimulating hormone (α-MSH) and insulin. α-MSH and related melanocortins have been shown in rodents and people to impair neutrophil function by decreasing superoxide production (known as oxidative burst activity), migration and adhesion. The goal of this study was to determine if neutrophil function is impaired in horses with PPID and, if so, to determine if plasma α-MSH or insulin concentration correlated with the severity of neutrophil dysfunction. Specifically, neutrophil phagocytosis, oxidative burst activity, chemotaxis and adhesion were assessed. Results of this study indicate that horses with PPID have reduced neutrophil function, characterized by decreased oxidative burst activity and adhesion. In addition, chemotaxis was greater in healthy aged horses than in young horses or aged horses with PPID. Plasma insulin: α-MSH ratio, but not individual hormone concentration was correlated to neutrophil oxidative burst activity. In summary, neutrophil function is impaired in horses with PPID, likely due to altered hormone concentrations and may contribute to increased risk of opportunistic infections. Whether regulation of hormone concentration profiles in horses with PPID using therapeutic intervention improves neutrophil function and reduces infections needs to be explored.
Collapse
|
5
|
Alpha-melanocyte stimulating hormone: an emerging anti-inflammatory antimicrobial peptide. BIOMED RESEARCH INTERNATIONAL 2014; 2014:874610. [PMID: 25140322 PMCID: PMC4130143 DOI: 10.1155/2014/874610] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/22/2014] [Accepted: 07/01/2014] [Indexed: 12/18/2022]
Abstract
The alpha-melanocyte stimulating hormone (α-MSH) is a neuropeptide belonging to the melanocortin family. It is well known for its anti-inflammatory and antipyretic effects and shares several characteristics with antimicrobial peptides (AMPs). There have been some recent reports about the direct antimicrobial activity of α-MSH against various microbes belonging to both fungal and bacterial pathogens. Similar to α-MSH's anti-inflammatory properties, its C-terminal residues also exhibit antimicrobial activity parallel to that of the entire peptide. This review is focused on the current findings regarding the direct antimicrobial potential and immunomodulatory mechanism of α-MSH and its C-terminal fragments, with particular emphasis on the prospects of α-MSH based peptides as a strong anti-infective agent.
Collapse
|
6
|
Curbing Inflammation through Endogenous Pathways: Focus on Melanocortin Peptides. Int J Inflam 2013; 2013:985815. [PMID: 23738228 PMCID: PMC3664505 DOI: 10.1155/2013/985815] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 12/26/2022] Open
Abstract
The resolution of inflammation is now known to be an active process, armed with a multitude of mediators both lipid and protein in nature. Melanocortins are peptides endowed with considerable promise with their proresolution and anti-inflammatory effects in preclinical models of inflammatory disease, with tissue protective effects. These peptides and their targets are appealing because they can be seen as a natural way of inducing these effects as they harness endogenous pathways of control. Whereas most of the information generated about these mediators derives from several acute models of inflammation (such as zymosan induced peritonitis), there is some indication that these mediators may inhibit chronic inflammation by modulating cytokines, chemokines, and leukocyte apoptosis. In addition, proresolving mediators and their mimics have often been tested alongside therapeutic protocols, hence have been tested in settings more relevant to real life clinical scenarios. We provide here an overview on some of these mediators with a focus on melanocortin peptides and receptors, proposing that they may unveil new opportunities for innovative treatments of inflammatory arthritis.
Collapse
|
7
|
Perez-Ruiz F, Herrero-Beites AM. ACTH analogues medications for the treatment of crystal-induced acute inflammation. A target to be explored? Joint Bone Spine 2013; 80:236-7. [DOI: 10.1016/j.jbspin.2013.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/18/2013] [Indexed: 11/25/2022]
|
8
|
Ji HX, Zou YL, Duan JJ, Jia ZR, Li XJ, Wang Z, Li L, Li YW, Liu GY, Tong MQ, Li XY, Zhang GH, Dai XR, He L, Li ZY, Cao C, Yang Y. The synthetic melanocortin (CKPV)2 exerts anti-fungal and anti-inflammatory effects against Candida albicans vaginitis via inducing macrophage M2 polarization. PLoS One 2013; 8:e56004. [PMID: 23457491 PMCID: PMC3573073 DOI: 10.1371/journal.pone.0056004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 01/04/2013] [Indexed: 12/30/2022] Open
Abstract
In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation.
Collapse
Affiliation(s)
- Hai-xia Ji
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yu-lian Zou
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Jing-jing Duan
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhi-rong Jia
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xian-jing Li
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhuo Wang
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Li Li
- Department of Pharmacology, Department of Physiology, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Yong-wen Li
- Department of Pharmacology, Department of Physiology, Guilin Medical University, Guilin, Guangxi, People’s Republic of China
| | - Gen-yan Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ming-Qing Tong
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiao-yi Li
- Hefei Zhaoke Pharmaceutical, Hefei, People’s Republic of China
| | - Guo-hui Zhang
- Hefei Zhaoke Pharmaceutical, Hefei, People’s Republic of China
| | - Xiang-rong Dai
- Hefei Zhaoke Pharmaceutical, Hefei, People’s Republic of China
| | - Ling He
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zhi-yu Li
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (YY); (CC); (ZL)
| | - Cong Cao
- Neuroscience Institute, Soochow University, Soochow, Jiangsu, People’s Republic of China
- * E-mail: (YY); (CC); (ZL)
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Academic Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, Jiangsu, People’s Republic of China
- * E-mail: (YY); (CC); (ZL)
| |
Collapse
|
9
|
Seo MD, Won HS, Kim JH, Mishig-Ochir T, Lee BJ. Antimicrobial peptides for therapeutic applications: a review. Molecules 2012; 17:12276-86. [PMID: 23079498 PMCID: PMC6268056 DOI: 10.3390/molecules171012276] [Citation(s) in RCA: 331] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/08/2012] [Accepted: 10/17/2012] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial peptides (AMPs) have been considered as potential therapeutic sources of future antibiotics because of their broad-spectrum activities and different mechanisms of action compared to conventional antibiotics. Although AMPs possess considerable benefits as new generation antibiotics, their clinical and commercial development still have some limitations, such as potential toxicity, susceptibility to proteases, and high cost of peptide production. In order to overcome those obstacles, extensive efforts have been carried out. For instance, unusual amino acids or peptido-mimetics are introduced to avoid the proteolytic degradation and the design of short peptides retaining antimicrobial activities is proposed as a solution for the cost issue. In this review, we focus on small peptides, especially those with less than twelve amino acids, and provide an overview of the relationships between their three-dimensional structures and antimicrobial activities. The efforts to develop highly active AMPs with shorter sequences are also described.
Collapse
Affiliation(s)
- Min-Duk Seo
- College of Pharmacy, Ajou University, Suwon 443-749, Korea
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Ji-Hun Kim
- Center for Structural Biology and Departments of Biochemistry and Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
- Author to whom correspondence should be addressed; ; Tel.: +82-2-880-7869; Fax: +82-2-872-3632
| |
Collapse
|
10
|
Gatti S, Lonati C, Sordi A, Catania A. Protective Effects of Melanocortins in Systemic Host Reactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:117-25. [DOI: 10.1007/978-1-4419-6354-3_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Patel HB, Leoni G, Melendez TM, Sampaio ALF, Perretti M. Melanocortin Control of Cell Trafficking in Vascular Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:88-106. [DOI: 10.1007/978-1-4419-6354-3_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Capsoni F, Ongari AM, Reali E, Catania A. Melanocortin peptides inhibit urate crystal-induced activation of phagocytic cells. Arthritis Res Ther 2009; 11:R151. [PMID: 19814819 PMCID: PMC2787256 DOI: 10.1186/ar2827] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/18/2009] [Accepted: 10/08/2009] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION The melanocortin peptides have marked anti-inflammatory potential, primarily through inhibition of proinflammatory cytokine production and action on phagocytic cell functions. Gout is an acute form of arthritis caused by the deposition of urate crystals, in which phagocytic cells and cytokines play a major pathogenic role. We examined whether alpha-melanocyte-stimulating hormone (alpha-MSH) and its synthetic derivative (CKPV)2 influence urate crystal-induced monocyte (Mo) activation and neutrophil responses in vitro. METHODS Purified Mos were stimulated with monosodium urate (MSU) crystals in the presence or absence of melanocortin peptides. The supernatants were tested for their ability to induce neutrophil activation in terms of chemotaxis, production of reactive oxygen intermediates (ROIs), and membrane expression of CD11b, Toll-like receptor-2 (TLR2) and TLR4. The proinflammatory cytokines interleukin (IL)-1beta, IL-8, and tumor necrosis factor-alpha (TNF-alpha) and caspase-1 were determined in the cell-free supernatants. In parallel experiments, purified neutrophils were preincubated overnight with or without melanocortin peptides before the functional assays. RESULTS The supernatants from MSU crystal-stimulated Mos exerted chemoattractant and priming activity on neutrophils, estimated as ROI production and CD11b membrane expression. The supernatants of Mos stimulated with MSU in the presence of melanocortin peptides had less chemoattractant activity for neutrophils and less ability to prime neutrophils for CD11b membrane expression and oxidative burst. MSU crystal-stimulated Mos produced significant levels of IL-1beta, IL-8, TNF-alpha, and caspase-1. The concentrations of proinflammatory cytokines, but not of caspase-1, were reduced in the supernatants from Mos stimulated by MSU crystals in the presence of melanocortin peptides. Overnight incubation of neutrophils with the peptides significantly inhibited their ability to migrate toward chemotactic supernatants and their capacity to be primed in terms of ROI production. CONCLUSIONS Alpha-MSH and (CKPV)2 have a dual effect on MSU crystal-induced inflammation, inhibiting the Mos' ability to produce neutrophil chemoattractants and activating compounds and preventing the neutrophil responses to these proinflammatory substances. These findings reinforce previous observations on the potential role of alpha-MSH and related peptides as a new class of drugs for treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Franco Capsoni
- Rheumatology Unit, Istituto Ortopedico Galeazzi IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico), University of Milan, Via Riccardo Galeazzi 4, 20161 Milan, Italy.
| | | | | | | |
Collapse
|