1
|
Liu C, Lu J, Yuan T, Xie L, Zhang L. EPC-exosomal miR-26a-5p improves airway remodeling in COPD by inhibiting ferroptosis of bronchial epithelial cells via PTGS2/PGE2 signaling pathway. Sci Rep 2023; 13:6126. [PMID: 37059741 PMCID: PMC10104834 DOI: 10.1038/s41598-023-33151-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/07/2023] [Indexed: 04/16/2023] Open
Abstract
We aimed to investigate whether exosomes (Exo) affected chronic obstructive pulmonary disease (COPD) by influencing ferroptosis of bronchial epithelial cells (BECs) and the mechanisms involved. Here we took the peripheral blood samples of normal subjects and COPD patients, extracted and identified endothelial progenitor cells (EPCs) and EPC-Exo. An animal model of COPD was established. Then human BECs were taken and treated with cigarette smoke extract (CSE) for 24 h to construct a COPD cell model. Next, we screened differentially expressed ferroptosis-related genes in COPD patients by bioinformatics. Bioinformatics predicted the miRNA targeting PTGS2. Then, the mechanism of action of miR-26a-5p and Exo-miR-26a-5p was investigated in vitro. We successfully isolated and identified EPC and Exo. In vitro, EPC alleviated CSE-induced ferroptosis in BECs by transporting Exo. In vivo, Exo alleviated cigarette smoke-induced ferroptosis and airway remodeling in mice. Through further validation, we found that CSE-induced ferroptosis promoted the epithelial-mesenchymal transition (EMT) of BECs. Bioinformatics analysis and validation showed that PTGS2/PGE2 pathway affected CSE-induced ferroptosis in BECs. Meanwhile, miR-26a-5p targeting PTGS2 affected CSE-induced ferroptosis in BECs. Additionally, we found that miR-26a-5p affected CSE-induced BECs EMT. Exo-miR-26a-5p alleviated CSE-induced ferroptosis and EMT. In conclusion, EPC-exosomal miR-26a-5p improved airway remodeling in COPD by inhibiting ferroptosis of BECs via the PTGS2/PGE2 pathway.
Collapse
Affiliation(s)
- Caihong Liu
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Junjuan Lu
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Ting Yuan
- Department of Nutriology, Second Xiangya Hospital, Central South University, Changsha, 410001, Hunan, China
| | - Lihua Xie
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
2
|
Sehgal A, Behl T, Singh S, Sharma N, Albratty M, Alhazmi HA, Meraya AM, Aleya L, Sharma A, Bungau S. Exploring the pivotal role of endothelin in rheumatoid arthritis. Inflammopharmacology 2022; 30:1555-1567. [PMID: 36029362 DOI: 10.1007/s10787-022-01051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/01/2022] [Indexed: 11/05/2022]
Abstract
A chronic inflammatory disorder, rheumatoid arthritis (RA) is an autoimmune and systemic disease characterized by progressive and prolonged destruction of joints. This results in increased mortality, physical disability and destruction. Cardiovascular disorders are one of the primary causes of mortality in patients with RA. It is multifactorial in nature and includes genetic, environmental and demographic factors which contribute to the severity of disease. Endothelin-1 (ET-1) is a peptide which acts as a potent vasoconstrictor and is generated through vascular smooth muscle and endothelial cells. Endothelins may be responsible for RA, as under certain circumstances they produce reactive oxygen species which further promote the production of pro-inflammatory cytokines. This enhances the production of superoxide anion, which activates pro-inflammatory cytokines, resulting in RA. The aim of this review is to elucidate the role of endothelin in the progression of RA. This review also summarizes the natural and synthetic anti-inflammatory drugs which have provided remarkable insights in targeting endothelin.
Collapse
Affiliation(s)
- Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, 133207, Haryana, India
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia.,Substance Abuse and Toxicology Research Center, Jazan University, Jazan, Saudi Arabia
| | - Abdulkarim M Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Aditi Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania.,Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Wijesundara NM, Lee SF, Davidson R, Cheng Z, Rupasinghe HPV. Carvacrol Suppresses Inflammatory Biomarkers Production by Lipoteichoic Acid- and Peptidoglycan-Stimulated Human Tonsil Epithelial Cells. Nutrients 2022; 14:nu14030503. [PMID: 35276864 PMCID: PMC8840435 DOI: 10.3390/nu14030503] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Pharyngitis is an inflammation of the pharynx caused by viral, bacterial, or non-infectious factors. In the present study, the anti-inflammatory efficacy of carvacrol was assessed using an in vitro model of streptococcal pharyngitis using human tonsil epithelial cells (HTonEpiCs) induced with Streptococcus pyogenes cell wall antigens. HTonEpiCs were stimulated by a mixture of lipoteichoic acid (LTA) and peptidoglycan (PGN) for 4 h followed by exposure to carvacrol for 20 h. Following exposure, interleukin (IL)-6, IL-8, human beta defensin-2 (HBD-2), epithelial-derived neutrophil-activating protein-78 (ENA-78), granulocyte chemotactic protein-2 (GCP-2), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and prostaglandin (PGE2) were measured by enzyme-linked immunosorbent assays (ELISA). The levels of pro-inflammatory cytokines, IL-6, IL-8, ENA-78, and GCP-2 were decreased in a carvacrol dose-dependent manner. The production of HBD-2 was significantly suppressed over 24 h carvacrol treatments. PGE2 and COX-2 levels in the cell suspensions were affected by carvacrol treatment. TNF-α was not detected. The cell viability of all the tested carvacrol concentrations was greater than 80%, with no morphological changes. The results suggest that carvacrol has anti-inflammatory properties, and carvacrol needs to be further assessed for potential clinical or healthcare applications to manage the pain associated with streptococcal pharyngitis.
Collapse
Affiliation(s)
- Niluni M. Wijesundara
- Department of Biology, Faculty of Science, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Animal Science, Faculty of Animal Science and Export Agriculture, Uva Wellassa University, Badulla 90000, Sri Lanka
| | - Song F. Lee
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 6R8, Canada; (S.F.L.); (R.D.); (Z.C.)
- Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Canadian Center for Vaccinology, Dalhousie University, Nova Scotia Health Authority, and the Izaak Walton Killam Health Centre, Halifax, NS B3H 4R2, Canada
| | - Ross Davidson
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 6R8, Canada; (S.F.L.); (R.D.); (Z.C.)
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Department of Pathology and Laboratory Medicine, Division of Microbiology, Queen Elizabeth II Health Sciences Centre, Nova Scotia Health Authority, Halifax, NS B3H 1V8, Canada
| | - Zhenyu Cheng
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 6R8, Canada; (S.F.L.); (R.D.); (Z.C.)
| | - H. P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: ; Tel.: +1-902-893-6623
| |
Collapse
|
4
|
Guo Y, Wu B, Chen Q, Min S. Parecoxib ameliorates renal toxicity and injury in sepsis-induced mouse model and LPS-induced HK-2 cells. Drug Dev Res 2021; 83:659-668. [PMID: 34813666 DOI: 10.1002/ddr.21897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/13/2021] [Accepted: 10/23/2021] [Indexed: 12/29/2022]
Abstract
Parecoxib is a selective COX-2-specific inhibitor, which has been demonstrated to inhibit sepsis-induced systemic inflammation, but its role in sepsis-induced acute kidney injury has not been studied. This study was designed to investigate the effects of Parecoxib on sepsis-induced acute kidney injury. In this study, the mice sepsis model was established using an internationally recognized cecal ligation and puncture (CLP). Hematoxylin-eosin staining was performed to examine kidney injury. Biochemical kit was used to detect the expression of BUN and Cre in serum, and ELISA was used to detect the expression of inflammatory factors in renal tissue. Tunel staining was used to detect tissue apoptosis. Furthermore, CCK-8 assay was used to detect the cell viability of HK-2 cells and RT-qPCR was used to detect the expression of LPS-induced inflammatory factors in HK-2 cells.TUNEL staining was used to detect the level of cell apoptosis. Finally, the expressions of COX-2, p-NF-kB P65, p-IKKβ, NF-kB P65, IKKβ, Kim1, NGAL, iNOS, VEGF, VEGFR2, CD31 and apoptosis-related proteins in renal tissues and HK-2 cells were detected by Western blot. We discovered that parecoxib could alleviate renal pathological changes, reduce renal function injury, and inhibit renal pathology to inhibit the release of inflammatory factors in renal tissue. Parecoxib inhibited sepsis induced microvascular damage and apoptosis in renal tissue. Parecoxib reduced the inflammation and apoptosis of renal tubular epithelial cells induced by LPS. Our data suggest that Parecoxib ameliorates sepsis-induced kidney injury, and may have potential as a novel therapeutic method for treating sepsis-induced kidney injury.
Collapse
Affiliation(s)
- Yuanyuan Guo
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bin Wu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qibin Chen
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Su Min
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
5
|
Egea G, Jiménez-Altayó F, Campuzano V. Reactive Oxygen Species and Oxidative Stress in the Pathogenesis and Progression of Genetic Diseases of the Connective Tissue. Antioxidants (Basel) 2020; 9:antiox9101013. [PMID: 33086603 PMCID: PMC7603119 DOI: 10.3390/antiox9101013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Connective tissue is known to provide structural and functional “glue” properties to other tissues. It contains cellular and molecular components that are arranged in several dynamic organizations. Connective tissue is the focus of numerous genetic and nongenetic diseases. Genetic diseases of the connective tissue are minority or rare, but no less important than the nongenetic diseases. Here we review the impact of reactive oxygen species (ROS) and oxidative stress on the onset and/or progression of diseases that directly affect connective tissue and have a genetic origin. It is important to consider that ROS and oxidative stress are not synonymous, although they are often closely linked. In a normal range, ROS have a relevant physiological role, whose levels result from a fine balance between ROS producers and ROS scavenge enzymatic systems. However, pathology arises or worsens when such balance is lost, like when ROS production is abnormally and constantly high and/or when ROS scavenge (enzymatic) systems are impaired. These concepts apply to numerous diseases, and connective tissue is no exception. We have organized this review around the two basic structural molecular components of connective tissue: The ground substance and fibers (collagen and elastic fibers).
Collapse
Affiliation(s)
- Gustavo Egea
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
- Institut d’Investigacions Biomédiques August Pi i Sunyer (IDIBAPS), University of Barcelona, 08036 Barcelona, Spain
- Institut de Nanociencies I Nanotecnologia (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-021-909
| | - Francesc Jiménez-Altayó
- Departament of Pharmacology, Therapeutics, and Toxicology, Neuroscience Institute, Autonomous University of Barcelona, 08193 Barcelona, Spain;
| | - Victoria Campuzano
- Department of Biomedical Science, University of Barcelona School of Medicine and Health Sciences, 08036 Barcelona, Spain;
| |
Collapse
|
6
|
Lin YH, Arashiro M, Clapp PW, Cui T, Sexton KG, Vizuete W, Gold A, Jaspers I, Fry RC, Surratt JD. Gene Expression Profiling in Human Lung Cells Exposed to Isoprene-Derived Secondary Organic Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8166-8175. [PMID: 28636383 PMCID: PMC5610912 DOI: 10.1021/acs.est.7b01967] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Secondary organic aerosol (SOA) derived from the photochemical oxidation of isoprene contributes a substantial mass fraction to atmospheric fine particulate matter (PM2.5). The formation of isoprene SOA is influenced largely by anthropogenic emissions through multiphase chemistry of its multigenerational oxidation products. Considering the abundance of isoprene SOA in the troposphere, understanding mechanisms of adverse health effects through inhalation exposure is critical to mitigating its potential impact on public health. In this study, we assessed the effects of isoprene SOA on gene expression in human airway epithelial cells (BEAS-2B) through an air-liquid interface exposure. Gene expression profiling of 84 oxidative stress and 249 inflammation-associated human genes was performed. Our results show that the expression levels of 29 genes were significantly altered upon isoprene SOA exposure under noncytotoxic conditions (p < 0.05), with the majority (22/29) of genes passing a false discovery rate threshold of 0.3. The most significantly affected genes belong to the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription factor network. The Nrf2 function is confirmed through a reporter cell line. Together with detailed characterization of SOA constituents, this study reveals the impact of isoprene SOA exposure on lung responses and highlights the importance of further understanding its potential health outcomes.
Collapse
Affiliation(s)
- Ying-Hsuan Lin
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maiko Arashiro
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Phillip W. Clapp
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tianqu Cui
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth G. Sexton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William Vizuete
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Avram Gold
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ilona Jaspers
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Pediatrics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason D. Surratt
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Potential role for ET-2 acting through ETA receptors in experimental colitis in mice. Inflamm Res 2016; 66:141-155. [PMID: 27778057 DOI: 10.1007/s00011-016-1001-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE AND DESIGN This study attempted to clarify the roles of endothelins and mechanisms associated with ETA/ETB receptors in mouse models of colitis. MATERIALS AND METHODS Colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS, 1.5 mg/animal) or dextran sulfate sodium (DSS, 3%). After colitis establishment, mice received Atrasentan (ETA receptor antagonist, 10 mg/kg), A-192621 (ETB receptor antagonist, 20 mg/kg) or Dexamethasone (1 mg/kg) and several inflammatory parameters were assessed, as well as mRNA levels for ET-1, ET-2 and ET receptors. RESULTS Atrasentan treatment ameliorates TNBS- and DSS-induced colitis. In the TNBS model was observed reduction in macroscopic and microscopic score, colon weight, neutrophil influx, IL-1β, MIP-2 and keratinocyte chemoattractant (KC) levels, inhibition of adhesion molecules expression and restoration of IL-10 levels. However, A192621 treatment did not modify any parameter. ET-1 and ET-2 mRNA was decreased 24 h, but ET-2 mRNA was markedly increased at 48 h after TNBS. ET-2 was able to potentiate LPS-induced KC production in vitro. ETA and ETB receptors mRNA were increased at 24, 48 and 72 h after colitis induction. CONCLUSIONS Atrasentan treatment was effective in reducing the severity of colitis in DSS- and TNBS-treated mice, suggesting that ETA receptors might be a potential target for inflammatory bowel diseases.
Collapse
|
8
|
Li H, Gao S, Ye J, Feng X, Cai Y, Liu Z, Lu J, Li Q, Huang X, Chen S, Liu P. COX-2 is involved in ET-1-induced hypertrophy of neonatal rat cardiomyocytes: role of NFATc3. Mol Cell Endocrinol 2014; 382:998-1006. [PMID: 24291639 DOI: 10.1016/j.mce.2013.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 10/31/2013] [Accepted: 11/19/2013] [Indexed: 01/04/2023]
Abstract
Endothelin-1 (ET-1) is a critical molecule that involved in heart failure. It has been proved that ET-1 stimulation results in cardiac hypertrophy both in vitro and in vivo, but the mechanisms underlying remain largely unknown. In this study, we reported that cyclooxygenase-2 (COX-2) might be an important mediator of hypertrophic responses to ET-1 stimulation. In the cultured rat neonatal cardiomyocytes, ET-1 significantly upregulated the expression and activity of COX-2, which was accompanied by increase in cell surface area and BNP mRNA level. In contrast, ET-1-dependent cardiomyocyte hypertrophy was abolished by COX-2 selective inhibitors, NS-398 and celecoxib, or by COX-2 RNA interference, but the inhibitory effects could be diminished by pretreatment with PGE2. Furthermore, cyclosporin A (CsA) and knockdown of nuclear factor of activated T-cells c3 (NFATc3) inhibited the expression of COX-2 induced by ET-1, and NFATc3 could also bound to the -GGAAA- sequence in the promoter region of rat COX-2 gene, indicating that calcineurin/NFATc3 signaling participated in the transcriptional regulation of COX-2 following ET-1 treatment. These findings provided further insight into the roles of ET-1 in cardiac hypertrophy and suggested a potential therapeutic strategy against cardiac hypertrophy by inhibiting COX-2.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Calcineurin/genetics
- Calcineurin/metabolism
- Cardiomegaly/genetics
- Cardiomegaly/metabolism
- Cardiomegaly/pathology
- Celecoxib
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Cyclooxygenase 2 Inhibitors/pharmacology
- Cyclosporine/pharmacology
- Dinoprostone/pharmacology
- Endothelin-1/metabolism
- Endothelin-1/pharmacology
- Gene Expression Regulation
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/metabolism
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Nitrobenzenes/pharmacology
- Primary Cell Culture
- Promoter Regions, Genetic
- Protein Binding
- Pyrazoles/pharmacology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Sulfonamides/pharmacology
- Transcription, Genetic
Collapse
Affiliation(s)
- Hong Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Si Gao
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Jiantao Ye
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Xiaojun Feng
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Yi Cai
- Guangzhou Research Institute of Snake Venom, Guangzhou Medical College, Guangzhou 510182, Guangdong, PR China
| | - Zhiping Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Jing Lu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Qin Li
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Xiaoyang Huang
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China
| | - Shaorui Chen
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China.
| | - Peiqing Liu
- Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, Guangdong, PR China.
| |
Collapse
|
9
|
New roles for old pathways? A circuitous relationship between reactive oxygen species and cyclo-oxygenase in hypertension. Clin Sci (Lond) 2013; 126:111-21. [PMID: 24059588 DOI: 10.1042/cs20120651] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated production of prostanoids from the constitutive (COX-1) or inducible (COX-2) cyclo-oxygenases has been involved in the alterations in vascular function, structure and mechanical properties observed in cardiovascular diseases, including hypertension. In addition, it is well known that production of ROS (reactive oxygen species) plays an important role in the impaired contractile and vasodilator responses, vascular remodelling and altered vascular mechanics of hypertension. Of particular interest is the cross-talk between NADPH oxidase and mitochondria, the main ROS sources in hypertension, which may represent a vicious feed-forward cycle of ROS production. In recent years, there is experimental evidence showing a relationship between ROS and COX-derived products. Thus ROS can activate COX and the COX/PG (prostaglandin) synthase pathways can induce ROS production through effects on different ROS generating enzymes. Additionally, recent evidence suggests that the COX-ROS axis might constitute a vicious circle of self-perpetuating vasoactive products that have a pathophysiological role in altered vascular contractile and dilator responses and hypertension development. The present review discusses the current knowledge on the role of oxidative stress and COX-derived prostanoids in the vascular alterations observed in hypertension, highlighting new findings indicating that these two pathways act in concert to induce vascular dysfunction.
Collapse
|
10
|
Hua KT, Lee WJ, Yang SF, Chen CK, Hsiao M, Ku CC, Wei LH, Kuo ML, Chien MH. Vascular endothelial growth factor-C modulates proliferation and chemoresistance in acute myeloid leukemic cells through an endothelin-1-dependent induction of cyclooxygenase-2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:387-97. [PMID: 24184161 DOI: 10.1016/j.bbamcr.2013.10.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/30/2013] [Accepted: 10/21/2013] [Indexed: 01/06/2023]
Abstract
High-level expression of vascular endothelial growth factor (VEGF)-C is associated with chemoresistance and adverse prognosis in acute myeloid leukemia (AML). Our previous study has found that VEGF-C induces cyclooxygenase-2 (COX-2) expression in AML cell lines and significant correlation of VEGF-C and COX-2 in bone marrow specimens. COX-2 has been reported to mediate the proliferation and drug resistance in several solid tumors. Herein, we demonstrated that the VEGF-C-induced proliferation of AML cells is effectively abolished by the depletion or inhibition of COX-2. The expression of endothelin-1 (ET-1) rapidly increased following treatment with VEGF-C. We found that ET-1 was also involved in the VEGF-C-mediated proliferation of AML cells, and that recombinant ET-1 induced COX-2 mRNA and protein expressions in AML cells. Treatment with the endothelin receptor A (ETRA) antagonist, BQ 123, or ET-1 shRNAs inhibited VEGF-C-induced COX-2 expression. Flow cytometry and immunoblotting revealed that VEGF-C induces S phase accumulation through the inhibition of p27 and the upregulation of cyclin E and cyclin-dependent kinase-2 expressions. The cell-cycle-related effects of VEGF-C were reversed by the depletion of COX-2 or ET-1. The depletion of COX-2 or ET-1 also suppressed VEGF-C-induced increases in the bcl-2/bax ratio and chemoresistance against etoposide and cytosine arabinoside in AML cells. We also demonstrated VEGF-C/ET-1/COX-2 axis-mediated chemoresistance in an AML xenograft mouse model. Our findings suggest that VEGF-C induces COX-2-mediated resistance to chemotherapy through the induction of ET-1 expression. Acting as a key regulator in the VEGF-C/COX-2 axis, ET-1 represents a potential target for ameliorating resistance to chemotherapy in AML patients.
Collapse
Affiliation(s)
- Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Kuan Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michael Hsiao
- The Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Chi Ku
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Lin-Hung Wei
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Liang Kuo
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Su Q, Jia RP, Lin J, Xu LW, Wang ZZ, Li WC, Wang SK. Effect of endothelin-1 on cyclooxygenase-2 expression in human hormone refractory prostate cancer cells. Oncol Lett 2010; 1:495-499. [PMID: 22966331 DOI: 10.3892/ol_00000087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/01/2010] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to explore the effects and possible mechanisms of recombinant human endothelin (ET)-1 on cyclooxygenase (COX)-2 expression in human hormone refractory prostate cancer PC3 cells. PC3 cells were treated with 100 nmol/l ET-1 for the indicated times (3, 6, 9, 12 and 24 h) and concentrations (0.1, 1, 10 and 100 nmol/l) for 24 h. Moreover, 100 nmol/l ET-1 was used to treat PC3 cells alone or in combination with endothelin A receptor (ET(A)R) antagonist BQ123 (1 μmol/l), endothelin B receptor (ET(B)R) antagonist BQ788 (1 μmol/l), MAPK/extracellular signal-regulated kinase kinase (MEK)-selective inhibitor, PD98059 (10 μmol/l), p38 mitogen-activated protein kinase (MAPK) antagonist SB203580 (5 μmol/l) or epidermal growth factor receptor (EGFR) antagonist AG1478 (0.1 μmol/l) for 24 h. COX-2 mRNA and protein expression was detected in the PC3 cells by reverse transcription-polymerase chain reaction and Western blot analysis. ET-1 induced a time- and dose-dependent increase in the mRNA and protein expression of COX-2 in the PC3 cells. BQ123, LY294002, SC203580 and AG1478 prevented the expression of COX-2 in the PC3 cells (P<0.05), while BQ788 did not. ET-1 induced the up-regulation of COX-2 in the PC3 cells. ET(A)R may be involved in the process. Several signaling pathways, including p42/44 MAPK, p38 MAPK and EGFR, are therefore implicated in the regulation of COX-2 expression.
Collapse
Affiliation(s)
- Qi Su
- Department of Urology, Nanjing First Hospital Affiliated with Nanjing Medical University, Nanjing 210006, P.R. China
| | | | | | | | | | | | | |
Collapse
|
12
|
Ewen D, Clarke S, Smith J, Berger C, Salmon G, Trevethick M, Shute J. The role of protease-activated receptors PAR-1 and PAR-2 in the repair of 16HBE 14o−epithelial cell monolayersin vitro. Clin Exp Allergy 2010; 40:435-49. [DOI: 10.1111/j.1365-2222.2010.03453.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Sampsonas F, Antonacopoulou A, Spathas D, Lykouras D, Kalofonos H, Flordellis C, Spiropoulos K, Siafakas N. Positive association between two polymorphic sites (+134 insA/delA and G198T) of the endothelin-1 gene and chronic obstructive pulmonary disease. A case-control study. Respir Med 2009; 104:114-20. [PMID: 19640695 DOI: 10.1016/j.rmed.2009.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 06/04/2009] [Accepted: 06/15/2009] [Indexed: 11/19/2022]
Abstract
Endothelin-1 (ET-1) has been implicated in the pathogenesis of Chronic Obstructive Pulmonary Disease (COPD) for establishing an inflammatory loop in the respiratory mucosa that could become independent from the initial irritant factor. Common causes of COPD exacerbations are associated with elevated ET-1 sputum concentrations. Genetic variants of the ET-1 gene, that lead to elevated ET-1 peptide levels, have not been investigated in COPD. We performed a case control, genetic study to assess possible associations of two polymorphisms of the ET-1 gene, an adenine insertion (+134 insA/delA) and a guanine to thymine transversion (G198T) with the COPD phenotype and disease severity. The genotypes of 209 subjects, 107 COPD smokers (patients) and 102 non-COPD smokers (controls) were examined. Statistical analysis revealed that the 3A/4A and 4A/4A genotypes were more common (P<0.01) in patients. Moreover, a protective effect against COPD of the TT genotype (G198T) was exhibited. COPD smokers were carrying more frequently the GG genotype and less frequently the TT genotype (P=0.047). Diplotypic analysis revealed that subjects carrying the 3A3A;TT genotype had a lower risk of COPD development (P=0.027). Within the COPD patient group carriers of the GT genotype had more often mild or moderate COPD compared to patients carrying the GG genotype (P=0.004). Haplotypic distribution revealed that carriers of the 4A:T and 4A:G haplotypes were in increased risk of COPD development. Additionally, patients with the 3A:G haplotype were in increased risk of developing severe COPD, whereas patients with the 3A:T and 4A:T had most probably mild-moderate COPD.
Collapse
Affiliation(s)
- Fotis Sampsonas
- University Hospital of Patras, Department of Pulmonology, 26500 Patras, Greece
| | | | | | | | | | | | | | | |
Collapse
|