1
|
Hosseini Goki N, Saberi MR, Amin M, Fazly Bazzaz BS, Khameneh B. Novel antimicrobial peptides based on Protegrin-1: In silico and in vitro assessments. Microb Pathog 2024; 196:106931. [PMID: 39288825 DOI: 10.1016/j.micpath.2024.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/13/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
The development of antibiotic resistance has caused significant health problems. Antimicrobial peptides (AMPs) are considered next-generation antibiotics. Protegrin-1 (PG-1) is a β-hairpin AMP with a membrane-binding capacity. This study used twelve PG-1 analogs with different amino acid substitutions. Coarse-grained molecular dynamics (MD) simulations were used to assess these analogs, and their physicochemical properties were computed using the Antimicrobial Peptide Database. Three AMPs, PEP-D, PEP-C, and PEP-H, were chosen and synthesized for antibacterial testing. The microbroth dilution technique and hemolytic assays evaluated the antimicrobial efficacy and cellular toxicity. The checkerboard method was used to test the combined activity of AMP and standard antibiotics. Cell membrane permeability and electron microscopy were used to evaluate the mode of action. The chemical stability of the selective AMP, PEP-D, was assessed by a validated HPLC method. PEP-D consists of 16-18 amino acid residues and has a charge of +7 and a hydrophobicity of 44 %, similar to PG-1. It can efficiently inactivate bacteria by disrupting cell membranes and significantly reducing hemolytic activity. Chemical stability studies indicated that AMP was stable at 40 °C for six months under autoclave conditions. This study could introduce the potential therapeutic application of selective AMP as an anti-infective agent.
Collapse
Affiliation(s)
- Narjes Hosseini Goki
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Castillo-Mendieta K, Agüero-Chapin G, Marquez EA, Perez-Castillo Y, Barigye SJ, Vispo NS, García-Jacas CR, Marrero-Ponce Y. Peptide hemolytic activity analysis using visual data mining of similarity-based complex networks. NPJ Syst Biol Appl 2024; 10:115. [PMID: 39367008 PMCID: PMC11452708 DOI: 10.1038/s41540-024-00429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
Peptides are promising drug development frameworks that have been hindered by intrinsic undesired properties including hemolytic activity. We aim to get a better insight into the chemical space of hemolytic peptides using a novel approach based on network science and data mining. Metadata networks (METNs) were useful to characterize and find general patterns associated with hemolytic peptides, whereas Half-Space Proximal Networks (HSPNs), represented the hemolytic peptide space. The best candidate HSPNs were used to extract various subsets of hemolytic peptides (scaffolds) considering network centrality and peptide similarity. These scaffolds have been proved to be useful in developing robust similarity-based model classifiers. Finally, using an alignment-free approach, we reported 47 putative hemolytic motifs, which can be used as toxic signatures when developing novel peptide-based drugs. We provided evidence that the number of hemolytic motifs in a sequence might be related to the likelihood of being hemolytic.
Collapse
Affiliation(s)
| | - Guillermin Agüero-Chapin
- CIIMAR-Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal.
| | - Edgar A Marquez
- Grupo de Investigaciones en Química y Biología, Departamento de Química y Biología, Facultad de Ciencias Básicas, Universidad del Norte, Universidad del Norte, Barranquilla, Colombia
| | - Yunierkis Perez-Castillo
- Bio-Chemoinformatics Research Group and Escuela de Ciencias Físicas y Matemáticas. Universidad de Las Américas, Quito, Ecuador
| | - Stephen J Barigye
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | | | - Cesar R García-Jacas
- Investigador por México, Consejo Nacional de Humanidades, Ciencias y Tecnologías (Conahcyt), 03940, Ciudad de Mexico, Mexico
| | - Yovani Marrero-Ponce
- Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, 03920, Ciudad de México, CDMX, México.
- Universidad San Francisco de Quito (USFQ), Grupo de Medicina Molecular y Traslacional (MeM&T), Colegio de Ciencias de la Salud (COCSA), Escuela de Medicina, Edificio de Especialidades Médicas; and Instituto de Simulación Computacional (ISC-USFQ), Diego de Robles y vía Interoceánica, Quito, Pichincha, Ecuador.
| |
Collapse
|
3
|
Bolosov IA, Panteleev PV, Sychev SV, Khokhlova VA, Safronova VN, Toropygin IY, Kombarova TI, Korobova OV, Pereskokova ES, Borzilov AI, Ovchinnikova TV, Balandin SV. Design of Protegrin-1 Analogs with Improved Antibacterial Selectivity. Pharmaceutics 2023; 15:2047. [PMID: 37631261 PMCID: PMC10458893 DOI: 10.3390/pharmaceutics15082047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Protegrin-1 (PG-1) is a cationic β-hairpin pore-forming antimicrobial peptide having a membranolytic mechanism of action. It possesses in vitro a potent antimicrobial activity against a panel of clinically relevant MDR ESKAPE pathogens. However, its extremely high hemolytic activity and cytotoxicity toward mammalian cells prevent the further development of the protegrin-based antibiotic for systemic administration. In this study, we rationally modulated the PG-1 charge and hydrophobicity by substituting selected residues in the central β-sheet region of PG-1 to design its analogs, which retain a high antimicrobial activity but have a reduced toxicity toward mammalian cells. In this work, eight PG-1 analogs with single amino acid substitutions and five analogs with double substitutions were obtained. These analogs were produced as thioredoxin fusions in Escherichia coli. It was shown that a significant reduction in hemolytic activity without any loss of antimicrobial activity could be achieved by a single amino acid substitution, V16R in the C-terminal β-strand, which is responsible for the PG-1 oligomerization. As the result, a selective analog with a ≥30-fold improved therapeutic index was obtained. FTIR spectroscopy analysis of analog, [V16R], revealed that the peptide is unable to form oligomeric structures in a membrane-mimicking environment, in contrast to wild-type PG-1. Analog [V16R] showed a reasonable efficacy in septicemia infection mice model as a systemic antibiotic and could be considered as a promising lead for further drug design.
Collapse
Affiliation(s)
- Ilia A. Bolosov
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Pavel V. Panteleev
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Sergei V. Sychev
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Veronika A. Khokhlova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Victoria N. Safronova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| | - Ilia Yu. Toropygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Tatiana I. Kombarova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Olga V. Korobova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Eugenia S. Pereskokova
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Alexander I. Borzilov
- State Research Center for Applied Microbiology & Biotechnology (SRCAMB), 142279 Obolensk, Russia
| | - Tatiana V. Ovchinnikova
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
- Department of Biotechnology, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey V. Balandin
- M. M. Shemyakin & Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of Sciences, 117997 Moscow, Russia; (I.A.B.); (P.V.P.); (T.V.O.)
| |
Collapse
|
4
|
Zharkova MS, Komlev AS, Filatenkova TA, Sukhareva MS, Vladimirova EV, Trulioff AS, Orlov DS, Dmitriev AV, Afinogenova AG, Spiridonova AA, Shamova OV. Combined Use of Antimicrobial Peptides with Antiseptics against Multidrug-Resistant Bacteria: Pros and Cons. Pharmaceutics 2023; 15:291. [PMID: 36678918 PMCID: PMC9863607 DOI: 10.3390/pharmaceutics15010291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Antimicrobial peptides (AMPs) are acknowledged as a promising template for designing new antimicrobials. At the same time, existing toxicity issues and limitations in their pharmacokinetics make topical application one of the less complicated routes to put AMPs-based therapeutics into actual medical practice. Antiseptics are one of the common components for topical treatment potent against antibiotic-resistant pathogens but often with toxicity limitations of their own. Thus, the interaction of AMPs and antiseptics is an interesting topic that is also less explored than combined action of AMPs and antibiotics. Herein, we analyzed antibacterial, antibiofilm, and cytotoxic activity of combinations of both membranolytic and non-membranolytic AMPs with a number of antiseptic agents. Fractional concentration indices were used as a measure of possible effective concentration reduction achievable due to combined application. Cases of both synergistic and antagonistic interaction with certain antiseptics and surfactants were identified, and trends in the occurrence of these types of interaction were discussed. The data may be of use for AMP-based drug development and suggest that the topic requires further attention for successfully integrating AMPs-based products in the context of complex treatment. AMP/antiseptic combinations show promise for creating topical formulations with improved activity, lowered toxicity, and, presumably, decreased chances of inducing bacterial resistance. However, careful assessment is required to avoid AMP neutralization by certain antiseptic classes in either complex drug design or AMP application alongside other therapeutics/care products.
Collapse
Affiliation(s)
- Maria S. Zharkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Aleksey S. Komlev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Tatiana A. Filatenkova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Maria S. Sukhareva
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Elizaveta V. Vladimirova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Andrey S. Trulioff
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Dmitriy S. Orlov
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Alexander V. Dmitriev
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
| | - Anna G. Afinogenova
- St. Petersburg Pasteur Institute, 14 Mira Street, St. Petersburg 197101, Russia
| | - Anna A. Spiridonova
- Department of Clinical Microbiology, Pavlov First Saint Petersburg State Medical University, 6/8 Lev Tolstoy Street, St. Petersburg 197022, Russia
| | - Olga V. Shamova
- Institute of Experimental Medicine, WCRC “Center for Personalized Medicine”, 12 Academic Pavlov Street, St. Petersburg 197022, Russia
- Department of Biochemistry, Saint Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg 199034, Russia
| |
Collapse
|
5
|
Robles-Loaiza AA, Pinos-Tamayo EA, Mendes B, Ortega-Pila JA, Proaño-Bolaños C, Plisson F, Teixeira C, Gomes P, Almeida JR. Traditional and Computational Screening of Non-Toxic Peptides and Approaches to Improving Selectivity. Pharmaceuticals (Basel) 2022; 15:323. [PMID: 35337121 PMCID: PMC8953747 DOI: 10.3390/ph15030323] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Peptides have positively impacted the pharmaceutical industry as drugs, biomarkers, or diagnostic tools of high therapeutic value. However, only a handful have progressed to the market. Toxicity is one of the main obstacles to translating peptides into clinics. Hemolysis or hemotoxicity, the principal source of toxicity, is a natural or disease-induced event leading to the death of vital red blood cells. Initial screenings for toxicity have been widely evaluated using erythrocytes as the gold standard. More recently, many online databases filled with peptide sequences and their biological meta-data have paved the way toward hemolysis prediction using user-friendly, fast-access machine learning-driven programs. This review details the growing contributions of in silico approaches developed in the last decade for the large-scale prediction of erythrocyte lysis induced by peptides. After an overview of the pharmaceutical landscape of peptide therapeutics, we highlighted the relevance of early hemolysis studies in drug development. We emphasized the computational models and algorithms used to this end in light of historical and recent findings in this promising field. We benchmarked seven predictors using peptides from different data sets, having 7-35 amino acids in length. According to our predictions, the models have scored an accuracy over 50.42% and a minimal Matthew's correlation coefficient over 0.11. The maximum values for these statistical parameters achieved 100.0% and 1.00, respectively. Finally, strategies for optimizing peptide selectivity were described, as well as prospects for future investigations. The development of in silico predictive approaches to peptide toxicity has just started, but their important contributions clearly demonstrate their potential for peptide science and computer-aided drug design. Methodology refinement and increasing use will motivate the timely and accurate in silico identification of selective, non-toxic peptide therapeutics.
Collapse
Affiliation(s)
- Alberto A. Robles-Loaiza
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Edgar A. Pinos-Tamayo
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30, 5 Vía Perimetral, Guayaquil 09-01-5863, Ecuador;
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Josselyn A. Ortega-Pila
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Carolina Proaño-Bolaños
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| | - Fabien Plisson
- Consejo Nacional de Ciencia y Tecnología, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación Y de Estudios Avanzados del IPN, Irapuato 36824, Mexico;
| | - Cátia Teixeira
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - Paula Gomes
- Laboratório Associado para a Química Verde-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; (C.T.); (P.G.)
| | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; (A.A.R.-L.); (B.M.); (J.A.O.-P.); (C.P.-B.)
| |
Collapse
|
6
|
Hussain W. sAMP-PFPDeep: Improving accuracy of short antimicrobial peptides prediction using three different sequence encodings and deep neural networks. Brief Bioinform 2021; 23:6445107. [PMID: 34849586 DOI: 10.1093/bib/bbab487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Short antimicrobial peptides (sAMPs) belong to a significant repertoire of antimicrobial agents and are known to possess enhanced antimicrobial activity, higher stability and less toxicity to human cells, as well as less complex than other large biological drugs. As these molecules are significantly important, herein, a prediction method for sAMPs (with a sequence length ≤ 30 residues) is proposed for accurate and efficient prediction of sAMPs instead of laborious and costly experimental approaches. Benchmark dataset was collected from a recently reported study and sequences were converted into three channel images comprising information related to the position, frequency and sum of 12 physiochemical features as the first, second and third channels, respectively. Two image-based deep neural networks (DNNs), i.e. RESNET-50 and VGG-16 were trained and evaluated using various metrics while a comparative analysis with previous techniques was also performed. Validation of sAMP-PFPDeep was also performed by using molecular docking based analysis. The results showed that VGG-16 provided more accurate results, i.e. 98.30% training accuracy and 87.37% testing accuracy for predicting sAMPs as compared to those of RESNET-50 having 96.14% training accuracy and 83.87% testing accuracy. However, the comparative analysis revealed that both these models outperformed previously reported state-of-the-art methods. Based on the results, it is concluded that sAMP-PFPDeep can help identify antimicrobial peptides with promising accuracy and efficiency. It can help biologists and scientists to identify antimicrobial peptides, by further aiding the computer-aided drug design and discovery, as well as virtual screening protocols against various pathologies. sAMP-PFPDeep is available at (https://github.com/WaqarHusain/sAMP-PFPDeep).
Collapse
Affiliation(s)
- Waqar Hussain
- Department of Computer Science, School of Systems and Technology, University of Management and Technology, Lahore-54770, Pakistan
| |
Collapse
|
7
|
Tavares LS, de Souza VC, Schmitz Nunes V, Nascimento Silva O, de Souza GT, Farinazzo Marques L, Capriles Goliatt PVZ, Facio Viccini L, Franco OL, de Oliveira Santos M. Antimicrobial peptide selection from Lippia spp leaf transcriptomes. Peptides 2020; 129:170317. [PMID: 32333997 DOI: 10.1016/j.peptides.2020.170317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022]
Abstract
Antimicrobial resistance is considered a health issue worldwide. This public health problem underscores the importance of searching for new antimicrobial molecules with different mechanisms of action. Leaf transcriptomes were used to search and develop synthetic antimicrobial peptides derived from mRNA sequences. The in silico search for new AMPs from the L. rotundifolia and L. alba transcriptomes allowed the identification of 120 putative peptide mRNA sequences. Eight of them fitted into optimal parameters and were translated and chemically synthesized antimicrobial peptides. Their biological activity was tested in both Gram-positive and Gram-negative bacteria against which they exhibited antibacterial activity. However, they showed an important hemolytic effect. Afterwards, two active peptides showing bactericidal activity isolated from each plant transcriptome tested were modified and modeled in 11 new variants to increase their antimicrobial activity and stability and to reduce or eliminate their hemolytic effect from their original peptides. The La-AMP1 (MSLLERKLLMHFLRV) the original peptide from L. alba showed a 52% hemolytic effect while the derived peptide La-AMP1a (GLMKLLRELLHMFSRVG) had its hemolytic effect reduced to 0.5% at 128 μg.mL-1. Similarly, we observed that the original peptide from L. rotundifolia, Lr-AMP1 (MRIGLRFVLM), displayed a 71.5% hemolytic effect, while its derived peptide Lr-AMP1f (GSVLRAIMRMFAKLMG) showed 0% hemolysis at 128 μg.mL-1, tested with fresh human erythrocytes. Our results indicate a promising method for the search for novel antimicrobial agents with reduced or zero hemolytic effect, as well as prediction and optimization of their activity from plant mRNA libraries.
Collapse
Affiliation(s)
- Letícia Stephan Tavares
- Genetics and Biotechnology Graduate Program, Juiz de Fora Federal University, Juiz de Fora, Brazil
| | | | - Vinícius Schmitz Nunes
- Computational Modeling Graduate Program, Juiz de Fora Federal University, Juiz de Fora, Brazil
| | - Osmar Nascimento Silva
- S-Inova Biotech, Biotechnology Graduate Program, Dom Bosco Catholic University, Campo Grande, MS, Brazil
| | - Gustavo Torres de Souza
- Genetics and Biotechnology Graduate Program, Juiz de Fora Federal University, Juiz de Fora, Brazil
| | - Lucas Farinazzo Marques
- Genetics and Biotechnology Graduate Program, Juiz de Fora Federal University, Juiz de Fora, Brazil
| | | | - Lyderson Facio Viccini
- Genetics and Biotechnology Graduate Program, Juiz de Fora Federal University, Juiz de Fora, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Biotechnology Graduate Program, Dom Bosco Catholic University, Campo Grande, MS, Brazil; Center for Proteomic and Biochemical Analyses, Genomic and Biotechnological Sciences Graduate Program, Catholic University of Brasilia, Brasília, DF, Brazil
| | | |
Collapse
|
8
|
Sanderson H, Khan K, Brun Hansen AM, Connors K, Lam MW, Roy K, Belanger S. Environmental Toxicity (Q)SARs for Polymers as an Emerging Class of Materials in Regulatory Frameworks, with a Focus on Challenges and Possibilities Regarding Cationic Polymers. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2020. [DOI: 10.1007/978-1-0716-0150-1_28] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Mousavizadegan M, Mohabatkar H. Computational prediction of antifungal peptides via Chou’s PseAAC and SVM. J Bioinform Comput Biol 2018; 16:1850016. [PMID: 30105927 DOI: 10.1142/s0219720018500166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
With the increase in immunocompromised patients in the recent years, fungal infections have emerged as new and serious threat in hospitals. This, and the insufficiency of current antifungal therapies alongside their toxic effects on patients, has led to the increased interest in seeking new antifungal peptides. In the present study, we have developed a prediction method for screening of antifungal peptides. For this, we have chosen Chou’s pseudo amino acid composition (PseAAC) to translate peptide sequences into numeric values. Thus, the SVM classifier was performed for binomial classification of antifungal peptides. The performance of the classifier was evaluated via ten-fold cross-validation and an independent dataset. For further validation of the model developed, 22 P24-derived peptides were predicted using the classifier and in vitro assays were performed on the three peptides with the highest prediction score. The results showed that the PseAAC [Formula: see text] SVM method is able to predict AFPs with ACC of 94.76%. In vitro results also validate the SEN and SPC of the classifier. The results suggest that the computational approach used in this study is highly efficient for prediction of antifungal peptides, which can save time and money in AFP screening and synthesis of novel peptides.
Collapse
Affiliation(s)
- Maryam Mousavizadegan
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Hassan Mohabatkar
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| |
Collapse
|
10
|
Conjugates and nano-delivery of antimicrobial peptides for enhancing therapeutic activity. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Oligomerization of the antimicrobial peptide Protegrin-5 in a membrane-mimicking environment. Structural studies by high-resolution NMR spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:293-300. [PMID: 27589857 DOI: 10.1007/s00249-016-1167-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
Protegrin pore formation is believed to occur in a stepwise fashion that begins with a nonspecific peptide interaction with the negatively charged bacterial cell walls via hydrophobic and positively charged amphipathic surfaces. There are five known nature protegrins (PG1-PG5), and early studies of PG-1 (PDB ID:1PG1) shown that it could form antiparallel dimer in membrane mimicking environment which could be a first step for further oligomeric membrane pore formation. Later, we solved PG-2 (PDB ID:2MUH) and PG-3 (PDB ID:2MZ6) structures in the same environment and for PG-3 observed a strong dαα NOE effects between residues R18 and F12, V14, and V16. These "inconsistent" with monomer structure NOEs appears due to formation of an additional antiparallel β-sheet between two monomers. It was also suggested that there is a possible association of protegrins dimers to form octameric or decameric β-barrels in an oligomer state. In order to investigate a more detailed oligomerization process of protegrins, in the present article we report the monomer (PDB ID: 2NC7) and octamer pore structures of the protegrin-5 (PG-5) in the presence of DPC micelles studied by solution NMR spectroscopy. In contrast to PG-1, PG-2, and PG-3 studies, for PG-5 we observed not only dimer NOEs but also several additional NOEs between side chains, which allows us to calculate an octamer pore structure of PG-5 that was in good agreement with previous AFM and PMF data.
Collapse
|
12
|
Kyriakou PK, Ekblad B, Kristiansen PE, Kaznessis YN. Interactions of a class IIb bacteriocin with a model lipid bilayer, investigated through molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:824-35. [PMID: 26774214 DOI: 10.1016/j.bbamem.2016.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 01/15/2023]
Abstract
The emergence of antibiotic resistant microorganisms poses an alarming threat to global health. Antimicrobial peptides (AMPs) are considered a possible effective alternative to conventional antibiotic therapies. An understanding of the mechanism of action of AMPs is needed in order to better control and optimize their bactericidal activity. Plantaricin EF is a heterodimeric AMP, consisting of two peptides Plantaricin E (PlnE) and Plantaricin F (PlnF). We studied the behavior of these peptides on the surface of a model lipid bilayer. We identified the residues that facilitate peptide-peptide interactions. We also identified residues that mediate interactions of the dimer with the membrane. PlnE interacts with the membrane through amino acids at both its termini, while only the N terminus of PlnF approaches the membrane. By comparing the activity of single-site mutants of the two-peptide bacteriocin and the simulations of the bacteriocin on the surface of a model lipid bilayer, structure activity relationships are proposed. These studies allow us to generate hypotheses that relate biophysical interactions observed in simulations with the experimentally measured activity. We find that single-site amino acid substitutions result in markedly stronger antimicrobial activity when they strengthen the interactions between the two peptides, while, concomitantly, they weaken peptide-membrane association. This effect is more pronounced in the case of the PlnE mutant (G20A), which interacts the strongest with PlnF and the weakest with the membrane while displaying the highest activity.
Collapse
Affiliation(s)
- Panagiota K Kyriakou
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States
| | - Bie Ekblad
- Department of Biosciences, University of Oslo, Post box 1041 Blindern, 0316 Oslo, Norway
| | - Per Eugen Kristiansen
- Department of Biosciences, University of Oslo, Post box 1041 Blindern, 0316 Oslo, Norway
| | - Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
13
|
AtomicChargeCalculator: interactive web-based calculation of atomic charges in large biomolecular complexes and drug-like molecules. J Cheminform 2015; 7:50. [PMID: 26500704 PMCID: PMC4613891 DOI: 10.1186/s13321-015-0099-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023] Open
Abstract
Background Partial atomic charges are a well-established concept, useful in understanding and modeling the chemical behavior of molecules, from simple compounds, to large biomolecular complexes with many reactive sites. Results This paper introduces AtomicChargeCalculator (ACC), a web-based application for the calculation and analysis of atomic charges which respond to changes in molecular conformation and chemical environment. ACC relies on an empirical
method to rapidly compute atomic charges with accuracy comparable to quantum mechanical approaches. Due to its efficient implementation, ACC can handle any type of molecular system, regardless of size and chemical complexity, from drug-like molecules to biomacromolecular complexes with hundreds of thousands of atoms. ACC writes out atomic charges into common molecular structure files, and offers interactive facilities for statistical analysis and comparison of the results, in both tabular and graphical form. Conclusions Due to high customizability and speed, easy streamlining and the unified platform for calculation and analysis, ACC caters to all fields of life sciences, from drug design to nanocarriers. ACC is freely available via the Internet at http://ncbr.muni.cz/ACC. Electronic supplementary material The online version of this article (doi:10.1186/s13321-015-0099-x) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
NIU MINGFU, CHAI SHUMAO, YOU XIAOYAN, WANG WENHUI, QIN CUILI, GONG QIANG, ZHANG TINGTING, WAN PENG. Expression of porcine protegrin-1 in Pichia pastoris and its anticancer activity in vitro.. Exp Ther Med 2015; 9:1075-1079. [PMID: 25667681 PMCID: PMC4316971 DOI: 10.3892/etm.2015.2202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 01/15/2015] [Indexed: 12/27/2022] Open
Abstract
Protegrin-1 (PG-1), a β-hairpin antimicrobial peptide (AMP), is amongst the shortest AMPs in sequence length while remaining active against a variety of microorganisms. The aim of this study was produce recombinant PG-1 and investigate its anticancer activity. A DNA sequence encoding the mature PG-1, fused with a 6His-tag, was cloned into the pPICZα-A vector and transformed into Pichia pastoris. Expression was induced following culture for ~96 h with 1% methanol at 28°C, and ~15.6 mg PG-1 was expressed in 100 ml culture medium. Following purification using a Ni-chelating Sepharose column, ~20 mg pure active PG-1 was obtained from 500 ml culture broth supernatant. The expressed PG-1/6His exhibited strong dose- and time-dependent anticancer activity against HepG2 cells in vitro.
Collapse
Affiliation(s)
- MINGFU NIU
- Correspondence to: Professor Mingfu Niu, Food and Bioengineering College, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang, Henan 471003, P.R. China, E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Borkar MR, Pissurlenkar RRS, Coutinho EC. Mapping activity elements of protegrin antimicrobial peptides by HomoSAR. RSC Adv 2015. [DOI: 10.1039/c5ra14402g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
HomoSAR has been able to shed light on the relationship between sequences of protegrin peptides and their activity on six specific micro-organisms.
Collapse
Affiliation(s)
| | | | - Evans C. Coutinho
- Department of Pharmaceutical Chemistry
- Bombay College of Pharmacy
- Mumbai 400098
- India
| |
Collapse
|
16
|
Abstract
Motivation: The increased prevalence of multi-drug resistant (MDR) pathogens heightens the need to design new antimicrobial agents. Antimicrobial peptides (AMPs) exhibit broad-spectrum potent activity against MDR pathogens and kills rapidly, thus giving rise to AMPs being recognized as a potential substitute for conventional antibiotics. Designing new AMPs using current in-silico approaches is, however, challenging due to the absence of suitable models, large number of design parameters, testing cycles, production time and cost. To date, AMPs have merely been categorized into families according to their primary sequences, structures and functions. The ability to computationally determine the properties that discriminate AMP families from each other could help in exploring the key characteristics of these families and facilitate the in-silico design of synthetic AMPs. Results: Here we studied 14 AMP families and sub-families. We selected a specific description of AMP amino acid sequence and identified compositional and physicochemical properties of amino acids that accurately distinguish each AMP family from all other AMPs with an average sensitivity, specificity and precision of 92.88%, 99.86% and 95.96%, respectively. Many of our identified discriminative properties have been shown to be compositional or functional characteristics of the corresponding AMP family in literature. We suggest that these properties could serve as guides for in-silico methods in design of novel synthetic AMPs. The methodology we developed is generic and has a potential to be applied for characterization of any protein family. Contact:vladimir.bajic@kaust.edu.sa Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Abdullah M Khamis
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
17
|
Abstract
The discovery of antibiotics is one of the most important advances in the history of humankind. For eighty years human life expectancy and standards of living improved greatly thanks to antibiotics. But bacteria have been fighting back, developing resistance to our most potent molecules. New, alternative strategies must be explored as antibiotic therapies become obsolete because of bacterial resistance. Mathematical models and simulations guide the development of complex technologies, such as aircrafts, bridges, communication systems and transportation systems. Herein, models are discussed that guide the development of new antibiotic technologies. These models span multiple molecular and cellular scales, and facilitate the development of a technology that addresses a significant societal challenge. We argue that simulations can be a creative source of knowledge.
Collapse
Affiliation(s)
- Yiannis N Kaznessis
- Department of Chemical Engineering and Materials Science University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Cyclotide structure-activity relationships: qualitative and quantitative approaches linking cytotoxic and anthelmintic activity to the clustering of physicochemical forces. PLoS One 2014; 9:e91430. [PMID: 24682019 PMCID: PMC3969350 DOI: 10.1371/journal.pone.0091430] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Cyclotides are a family of plant-derived proteins that are characterized by a cyclic backbone and a knotted disulfide topology. Their cyclic cystine knot (CCK) motif makes them exceptionally resistant to thermal, chemical, and enzymatic degradation. Cyclotides exert much of their biological activity via interactions with cell membranes. In this work, we qualitatively and quantitatively analyze the cytotoxic and anthelmintic membrane activities of cyclotides. The qualitative and quantitative models describe the potency of cyclotides using four simple physicochemical terms relevant to membrane contact. Specifically, surface areas of the cyclotides representing lipophilic and hydrogen bond donating properties were quantified and their distribution across the molecular surface was determined. The resulting quantitative structure-activity relation (QSAR) models suggest that the activity of the cyclotides is proportional to their lipophilic and positively charged surface areas, provided that the distribution of these surfaces is asymmetric. In addition, we qualitatively analyzed the physicochemical differences between the various cyclotide subfamilies and their effects on the cyclotides' orientation on the membrane and membrane activity.
Collapse
|
19
|
Sánchez-Vásquez L, Silva-Sanchez J, Jiménez-Vargas JM, Rodríguez-Romero A, Muñoz-Garay C, Rodríguez MC, Gurrola GB, Possani LD. Enhanced antimicrobial activity of novel synthetic peptides derived from vejovine and hadrurin. Biochim Biophys Acta Gen Subj 2013; 1830:3427-36. [DOI: 10.1016/j.bbagen.2013.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 01/15/2013] [Accepted: 01/28/2013] [Indexed: 01/06/2023]
|
20
|
Bolintineanu DS, Vivcharuk V, Kaznessis YN. Multiscale models of the antimicrobial peptide protegrin-1 on gram-negative bacteria membranes. Int J Mol Sci 2012; 13:11000-11011. [PMID: 23109834 PMCID: PMC3472726 DOI: 10.3390/ijms130911000] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/15/2012] [Accepted: 08/22/2012] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides (AMPs) are naturally-occurring molecules that exhibit strong antibiotic properties against numerous infectious bacterial strains. Because of their unique mechanism of action, they have been touted as a potential source for novel antibiotic drugs. We present a summary of computational investigations in our lab aimed at understanding this unique mechanism of action, in particular the development of models that provide a quantitative connection between molecular-level biophysical phenomena and relevant biological effects. Our work is focused on protegrins, a potent class of AMPs that attack bacteria by associating with the bacterial membrane and forming transmembrane pores that facilitate the unrestricted transport of ions. Using fully atomistic molecular dynamics simulations, we have computed the thermodynamics of peptide-membrane association and insertion, as well as peptide aggregation. We also present a multi-scale analysis of the ion transport properties of protegrin pores, ranging from atomistic molecular dynamics simulations to mesoscale continuum models of single-pore electrodiffusion to models of transient ion transport from bacterial cells. Overall, this work provides a quantitative mechanistic description of the mechanism of action of protegrin antimicrobial peptides across multiple length and time scales.
Collapse
Affiliation(s)
- Dan S. Bolintineanu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA; E-Mails: (D.S.B.); (V.V.)
| | - Victor Vivcharuk
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA; E-Mails: (D.S.B.); (V.V.)
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis, MN 55455, USA; E-Mails: (D.S.B.); (V.V.)
| |
Collapse
|
21
|
Silva ON, Mulder KCL, Barbosa AEAD, Otero-Gonzalez AJ, Lopez-Abarrategui C, Rezende TMB, Dias SC, Franco OL. Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front Microbiol 2011; 2:232. [PMID: 22125552 PMCID: PMC3222093 DOI: 10.3389/fmicb.2011.00232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/01/2011] [Indexed: 02/02/2023] Open
Abstract
In the last few years, the number of bacteria with enhanced resistance to conventional antibiotics has dramatically increased. Most of such bacteria belong to regular microbial flora, becoming a real challenge, especially for immune-depressed patients. Since the treatment is sometimes extremely expensive, and in some circumstances completely inefficient for the most severe cases, researchers are still determined to discover novel compounds. Among them, host-defense peptides (HDPs) have been found as the first natural barrier against microorganisms in nearly all living groups. This molecular class has been gaining attention every day for multiple reasons. For decades, it was believed that these defense peptides had been involved only with the permeation of the lipid bilayer in pathogen membranes, their main target. Currently, it is known that these peptides can bind to numerous targets, as well as lipids including proteins and carbohydrates, from the surface to deep within the cell. Moreover, by using in vivo models, it was shown that HDPs could act both in pathogens and cognate hosts, improving immunological functions as well as acting through multiple pathways to control infections. This review focuses on structural and functional properties of HDP peptides and the additional strategies used to select them. Furthermore, strategies to avoid problems in large-scale manufacture by using molecular and biochemical techniques will also be explored. In summary, this review intends to construct a bridge between academic research and pharmaceutical industry, providing novel insights into the utilization of HDPs against resistant bacterial strains that cause infections in humans.
Collapse
Affiliation(s)
- Osmar N Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Protômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system. Crit Rev Biotechnol 2011; 32:143-71. [PMID: 22074402 DOI: 10.3109/07388551.2011.594423] [Citation(s) in RCA: 545] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs.
Collapse
Affiliation(s)
- Mukesh Pasupuleti
- Department of Microbiology and Immunology, Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, Canada.
| | | | | |
Collapse
|
23
|
Lam KLH, Wang H, Siaw TA, Chapman MR, Waring AJ, Kindt JT, Lee KYC. Mechanism of structural transformations induced by antimicrobial peptides in lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:194-204. [PMID: 22100601 DOI: 10.1016/j.bbamem.2011.11.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/01/2011] [Accepted: 11/02/2011] [Indexed: 01/14/2023]
Abstract
It has long been suggested that pore formation is responsible for the increase in membrane permeability by antimicrobial peptides (AMPs). To better understand the mechanism of AMP activity, the disruption of model membrane by protegrin-1 (PG-1), a cationic antimicrobial peptide, was studied using atomic force microscopy. We present here the direct visualization of the full range of structural transformations in supported lipid bilayer patches induced by PG-1 on zwitterionic 1,2-dimyristoyl-snglycero-phospho-choline (DMPC) membranes. When PG-1 is added to DMPC, the peptide first induces edge instability at low concentrations, then pore-like surface defects at intermediate concentrations, and finally wormlike structures with a specific length scale at high concentrations. The formation of these structures can be understood using a mesophase framework of a binary mixture of lipids and peptides, where PG-1 acts as a line-active agent. Atomistic molecular dynamics simulations on lipid bilayer ribbons with PG-1 molecules placed at the edge or interior positions are carried out to calculate the effect of PG-1 in reducing line tension. Further investigation of the placement of PG-1 and its association with defects in the bilayer is carried out using unbiased assembly of a PG-1 containing bilayer from a random mixture of PG-1, DMPC, and water. A generalized model of AMP induced structural transformations is also presented in this work. This article is part of a Special Issue entitled: Membrane protein structure and function.
Collapse
Affiliation(s)
- Kin Lok H Lam
- Department of Physics, The University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Saidemberg DM, Baptista-Saidemberg NB, Palma MS. Chemometric analysis of Hymenoptera toxins and defensins: A model for predicting the biological activity of novel peptides from venoms and hemolymph. Peptides 2011; 32:1924-33. [PMID: 21855589 DOI: 10.1016/j.peptides.2011.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 11/22/2022]
Abstract
When searching for prospective novel peptides, it is difficult to determine the biological activity of a peptide based only on its sequence. The "trial and error" approach is generally laborious, expensive and time consuming due to the large number of different experimental setups required to cover a reasonable number of biological assays. To simulate a virtual model for Hymenoptera insects, 166 peptides were selected from the venoms and hemolymphs of wasps, bees and ants and applied to a mathematical model of multivariate analysis, with nine different chemometric components: GRAVY, aliphaticity index, number of disulfide bonds, total residues, net charge, pI value, Boman index, percentage of alpha helix, and flexibility prediction. Principal component analysis (PCA) with non-linear iterative projections by alternating least-squares (NIPALS) algorithm was performed, without including any information about the biological activity of the peptides. This analysis permitted the grouping of peptides in a way that strongly correlated to the biological function of the peptides. Six different groupings were observed, which seemed to correspond to the following groups: chemotactic peptides, mastoparans, tachykinins, kinins, antibiotic peptides, and a group of long peptides with one or two disulfide bonds and with biological activities that are not yet clearly defined. The partial overlap between the mastoparans group and the chemotactic peptides, tachykinins, kinins and antibiotic peptides in the PCA score plot may be used to explain the frequent reports in the literature about the multifunctionality of some of these peptides. The mathematical model used in the present investigation can be used to predict the biological activities of novel peptides in this system, and it may also be easily applied to other biological systems.
Collapse
Affiliation(s)
- Daniel M Saidemberg
- Center of Study of Social Insects (CEIS)/Dept. Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil
| | | | | |
Collapse
|
25
|
Knowledge-based computational methods for identifying or designing novel, non-homologous antimicrobial peptides. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 40:371-85. [DOI: 10.1007/s00249-011-0674-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/16/2010] [Accepted: 01/04/2011] [Indexed: 02/07/2023]
|
26
|
Bolintineanu DS, Kaznessis YN. Computational studies of protegrin antimicrobial peptides: a review. Peptides 2011; 32:188-201. [PMID: 20946928 PMCID: PMC3013618 DOI: 10.1016/j.peptides.2010.10.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 10/19/2022]
Abstract
Antimicrobial peptides (AMPs) are small, naturally occurring peptides that exhibit strong antibacterial properties generally believed to be a result of selective bacterial membrane disruption. As a result, there has been significant interest in the development of therapeutic antibiotics based on AMPs; however, the poor understanding of the fundamental mechanism of action of these peptides has largely hampered such efforts. We present a summary of computational and theoretical investigations of protegrin, a particularly potent peptide that is both an excellent model for the mechanism of action of AMPs and a promising therapeutic candidate. Experimental investigations have shed light on many of the key steps in the action of protegrin: protegrin monomers are known to dimerize in various lipid environments; protegrin peptides interact strongly with lipid bilayer membranes, particularly anionic lipids; protegrins have been shown to form pores in lipid bilayers, which results in uncontrolled ion transport and may be a key factor in bacterial death. In this work, we present a comprehensive review of the computational and theoretical studies that have complemented and extended the information obtained from experimental work with protegrins, as well as a brief survey of the experimental biophysical studies that are most pertinent to such computational work. We show that a consistent, mechanistic description of the bactericidal mechanism of action of protegrins is emerging, and briefly outline areas where the current understanding is deficient. We hope that the research reviewed herein offers compelling evidence of the benefits of computational investigations of protegrins and other AMPs, as well as providing a useful guide to future work in this area.
Collapse
Affiliation(s)
- Dan S. Bolintineanu
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis MN 55455
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave SE, Minneapolis MN 55455
- Corresponding author: , Tel: 612 624 4945, Fax: 612-626-7246
| |
Collapse
|
27
|
Capone R, Mustata M, Jang H, Arce FT, Nussinov R, Lal R. Antimicrobial protegrin-1 forms ion channels: molecular dynamic simulation, atomic force microscopy, and electrical conductance studies. Biophys J 2010; 98:2644-52. [PMID: 20513409 PMCID: PMC2877344 DOI: 10.1016/j.bpj.2010.02.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/27/2010] [Accepted: 02/03/2010] [Indexed: 10/19/2022] Open
Abstract
Antimicrobial peptides (AMPs) are an emerging class of antibiotics for controlling health effects of antibiotic-resistant microbial strains. Protegrin-1 (PG-1) is a model antibiotic among beta-sheet AMPs. Antibiotic activity of AMPs involves cell membrane damage, yet their membrane interactions, their 3D membrane-associated structures and the mechanism underlying their ability to disrupt cell membrane are poorly understood. Using complementary approaches, including molecular dynamics simulations, atomic force microscopy (AFM) imaging, and planar lipid bilayer reconstitution, we provide computational and experimental evidence that PG-1, a beta-hairpin peptide, forms ion channels. Simulations indicate that PG-1 forms channel-like structures with loosely attached subunits when reconstituted in anionic lipid bilayers. AFM images show the presence of channel-like structures when PG-1 is reconstituted in dioleoylphosphatidylserine/palmitoyloleoyl phosphatidylethanolamine bilayers or added to preformed bilayers. Planar lipid bilayer electrical recordings show multiple single channel conductances that are consistent with the heterogeneous oligomeric channel structures seen in AFM images. PG-1 channel formation seems to be lipid-dependent: PG-1 does not easily show ion channel electrical activity in phosphatidylcholine membranes, but readily shows channel activity in membranes rich in phosphatidylethanolamine or phosphatidylserine. The combined results support a model wherein the beta-hairpin PG-1 peptide acts as an antibiotic by altering cell ionic homeostasis through ion channel formation in cell membranes.
Collapse
Affiliation(s)
- Ricardo Capone
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mirela Mustata
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Hyunbum Jang
- Center for Cancer Research Nanobiology Program, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland
| | - Fernando Teran Arce
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, NCI-Frederick, SAIC-Frederick, Inc., Frederick, Maryland
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ratnesh Lal
- Center for Nanomedicine and Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
28
|
Conformational Analysis of a Synthetic Antimicrobial Peptide in Water and Membrane-Mimicking Solvents: A Molecular Dynamics Simulation Study. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9211-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Vivcharuk V, Kaznessis Y. Free energy profile of the interaction between a monomer or a dimer of protegrin-1 in a specific binding orientation and a model lipid bilayer. J Phys Chem B 2010; 114:2790-7. [PMID: 20136112 DOI: 10.1021/jp909640g] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The free energies of adsorption of the monomer or dimer of the cationic beta-hairpin antimicrobial peptide protegrin-1 (PG1) in a specific binding orientation on a lipid bilayer are determined using molecular dynamics (MD) simulations and Poisson-Boltzmann calculations. The bilayer is composed of anionic palmitoyl-oleoyl-phosphatidylglycerol (POPG) and palmitoyl-oleoyl-phosphatidylethanolamine (POPE) with ratio 1:3 (POPG/POPE). PG1 is believed to kill bacteria by binding on their membranes. There, it forms pores that lyse the bacteria. Herein we focus on the thermodynamics of binding. In particular, we explore the role of counterion release from the lipid bilayer upon adsorption of either the monomeric or the dimeric form of PG1. Twenty-two 4-ns-long MD trajectories of equilibrated systems are generated to determine the free energy profiles for the monomer and dimer as a function of the distance between the peptide(s) and the membrane surface. The MD simulations are conducted at 11 different separations from the membrane for each of the two systems, one with PG1, the second with a PG1 dimer of only a specific orientation of the monomer and dimer without taking into account the change of entropy for the peptide. To calculate the potential of mean force for each peptide/membrane system, a variant of constrained MD and thermodynamic integration is used. We observed that PG1 dimer binds more favorably to the POPG/POPE membrane. A simple method for relating the free energy profile to the PG1-membrane binding constant is employed to predict a free energy of adsorption of -2.4 +/- 0.8 kcal/mol. A corresponding PG1-dimer-membrane binding constant is calculated as -3.5 +/- 1.1 kcal/mol. Free energy profiles from MD simulation were extensively analyzed and compared with results of Poisson-Boltzmann theory. We find the peptide-membrane attraction to be dominated by the entropy increase due to the release of counterions in a POPG/POPE lipid bilayer.
Collapse
Affiliation(s)
- Victor Vivcharuk
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0132, USA
| | | |
Collapse
|
30
|
Juretić D, Vukicević D, Ilić N, Antcheva N, Tossi A. Computational design of highly selective antimicrobial peptides. J Chem Inf Model 2010; 49:2873-82. [PMID: 19947578 DOI: 10.1021/ci900327a] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have created a structure-selectivity database (AMPad) of frog-derived, helical antimicrobial peptides (AMPs), in which the selectivity was determined as a therapeutic index (TI), and then used the novel concept of sequence moments to study the lengthwise asymmetry of physicochemical peptide properties. We found that the cosine of the angle between two sequence moments obtained with different hydrophobicity scales, defined as the D-descriptor, identifies highly selective peptide antibiotics. We could then use this descriptor to predict TI changes after point mutations in known AMPs, and to aid the prediction of TI for de novo designed AMPs. In combination with an amino acid selectivity index, a motif regularity index and other statistical rules extracted from AMPad, the D-descriptor enabled construction of the AMP-Designer algorithm. A 23 residue, glycine-rich, peptide suggested by the algorithm was synthesized and the activity and selectivity tested. This peptide, adepantin 1, is less than 50% identical to any other AMP, has a potent antibacterial activity against the reference organism, E. coli, and has a significantly greater selectivity (TI > 200) than the best AMP present in the AMPad database (TI = 125).
Collapse
Affiliation(s)
- Davor Juretić
- Department of Physics, Faculty of Science, University of Split, 21000 Split, Croatia and Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | | | | | | | | |
Collapse
|
31
|
Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN. Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides 2010; 31:1-8. [PMID: 19931583 PMCID: PMC2825693 DOI: 10.1016/j.peptides.2009.11.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Antimicrobial peptides (AMPs), important effector molecules of the innate immune system, also provide templates for designing novel antibiotics. Protegrin, an especially potent AMP found in porcine leukocytes, was recently shown to form octameric transmembrane pores. We have employed a combination of experiments and models spanning length scales from the atomistic to the cellular level in order to elucidate the microbicidal mechanism of protegrin. Comparison of the modeling and experimental data suggests that approximately 10-100 protegrin pores are necessary to explain the observed rates of potassium leakage and Escherichia coli death in exponential-phase bacteria. The kinetics of viability loss suggest that bacterial death results largely from uncontrolled ion exchange processes and decay of transmembrane potential. However, ion exchange processes alone cannot account for the experimentally observed cell swelling and osmotic lysis-a redundant "overkill" mechanism most likely to occur in locales with high protegrin concentrations. Although our study is limited to protegrin and E. coli, the timeline of events described herein is likely shared by other AMPs that act primarily by permeabilizing microbial membranes. This work provides many of the missing links in describing antimicrobial action, as well as providing a quantitative connection between several previous experimental and simulation studies of protegrin.
Collapse
Affiliation(s)
- Dan Bolintineanu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Ehsan Hazrati
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - H. Ted Davis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Robert I. Lehrer
- Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, CA, USA
| | - Yiannis N. Kaznessis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
32
|
Abstract
LL-37 is a human host defence peptide that has a wide range of biological functions, including antimicrobial and immunomodulatory properties. This review summarises how molecular structure influences the balance between the immunomodulatory and antimicrobial functions of LL-37.
Collapse
Affiliation(s)
- Matthew F Burton
- Centre for Bioactive Chemistry, Department of Chemistry, University of Durham, Science Laboratory, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
33
|
Sang Y, Ruchala P, Lehrer RI, Ross CR, Rowland RRR, Blecha F. Antimicrobial host defense peptides in an arteriviral infection: differential peptide expression and virus inactivation. Viral Immunol 2009; 22:235-42. [PMID: 19594394 DOI: 10.1089/vim.2009.0005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial host defense peptides (AHDPs) are effective against a wide range of microbes, including viruses. The arteriviral infection caused by porcine reproductive and respiratory syndrome virus (PRRSV) is a devastating pandemic that causes the most economically significant disease of swine. We sought to determine if the expression of AHDPs was influenced by infection with PRRSV, and if porcine AHDPs have direct antiviral activity against PRRSV. Because pulmonary alveolar macrophages (PAMs) are primary targets of PRRSV infection, gene expression of porcine AHDPs was evaluated in lungs from fetal and 2-wk-old congenitally infected pigs. In PRRSV-positive lungs and PAMs, gene expression of most porcine AHDPs showed little upregulation. However, gene expression of porcine beta-defensin-1 (pBD-1), pBD-4, pBD-104, pBD-123, and pBD-125 were downregulated more than threefold in 2-wk-old congenitally infected pig lungs. Incubation of PRRSV with pBD-3 or PG-4 significantly inhibited viral infectivity in MARC-145 cells. Using nine protegrin or protegrin-derived peptides, we determined that a cyclic analog of PG-4 increased anti-PRRSV activity, and that substitution of phenylalanine with valine eliminated most PG-4 antiviral activity. In PAMs, pBD-3 and PG-4 at 5-40 microg/mL consistently suppressed PRRSV titers. Collectively, these findings suggest a potential role for some porcine AHDPs as innate antiviral effectors in PRRSV infection. Moreover, modulation of porcine innate immune mechanisms with AHDPs may be one means of limiting the impact of this costly pandemic viral disease.
Collapse
Affiliation(s)
- Yongming Sang
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506-5802, USA
| | | | | | | | | | | |
Collapse
|
34
|
Sayyed-Ahmad A, Khandelia H, Kaznessis YN. Relative free energy of binding between antimicrobial peptides and SDS or DPC micelles. MOLECULAR SIMULATION 2009; 35:986-997. [PMID: 21113423 DOI: 10.1080/08927020902902742] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
We present relative binding free energy calculations for six antimicrobial peptide-micelle systems, three peptides interacting with two types of micelles. The peptides are the scorpion derived antimicrobial peptide (AMP), IsCT and two of its analogues. The micelles are dodecylphosphatidylcholine (DPC) and sodium dodecylsulphate (SDS) micelles. The interfacial electrostatic properties of DPC and SDS micelles are assumed to be similar to those of zwitterionic mammalian and anionic bacterial membrane interfaces, respectively. We test the hypothesis that the binding strength between peptides and the anionic micelle SDS can provide information on peptide antimicrobial activity, since it is widely accepted that AMPs function by binding to and disrupting the predominantly anionic lipid bilayer of the bacterial cytoplasmic membrane. We also test the hypothesis that the binding strength between peptides and the zwitterionic micelle DPC can provide information on peptide haemolytic activities, since it is accepted that they also bind to and disrupt the zwitterionic membrane of mammalian cells. Equilibrium structures of the peptides, micelles and peptide-micelle complexes are obtained from more than 300 ns of molecular dynamics simulations. A thermodynamic cycle is introduced to compute the binding free energy from electrostatic, non-electrostatic and entropic contributions. We find relative binding free energy strengths between peptides and SDS to correlate with the experimentally measured rankings for peptide antimicrobial activities, and relative free energy binding strengths between peptides and DPC to correlate with the observed rankings for peptide haemolytic toxicities. These findings point to the importance of peptide-membrane binding strength for antimicrobial activity and haemolytic activity.
Collapse
Affiliation(s)
- Abdallah Sayyed-Ahmad
- Department of Chemical Engineering and Materials Science, and the Digital Technology Center, University of Minnesota, 421 Washington Ave. SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
35
|
Polyansky AA, Vassilevski AA, Volynsky PE, Vorontsova OV, Samsonova OV, Egorova NS, Krylov NA, Feofanov AV, Arseniev AS, Grishin EV, Efremov RG. N-terminal amphipathic helix as a trigger of hemolytic activity in antimicrobial peptides: A case study in latarcins. FEBS Lett 2009; 583:2425-8. [DOI: 10.1016/j.febslet.2009.06.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/27/2009] [Accepted: 06/24/2009] [Indexed: 01/29/2023]
|