1
|
Abeledo-Machado A, Peña-Zanoni M, Bornancini D, Camilletti MA, Faraoni EY, Marcial A, Rulli S, Alhenc-Gelas F, Díaz-Torga GS. Sex-specific Regulation of Prolactin Secretion by Pituitary Bradykinin Receptors. Endocrinology 2022; 163:6648127. [PMID: 35863039 DOI: 10.1210/endocr/bqac108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/19/2022]
Abstract
Sex differences in the control of prolactin secretion are well documented. Sex-related differences in intrapituitary factors regulating lactotroph function have recently attracted attention. Sex differences in prolactinoma development are well documented in clinic, prolactinomas being more frequent in women but more aggressive in men, for poorly understood reasons. Kallikrein, the enzyme releasing kinins has been found in the pituitary, but there is no information on pituitary kinin receptors and their function. In the present work, we characterized pituitary bradykinin receptors (BRs) at the messenger RNA and protein levels in 2 mouse models of prolactinoma, Drd2 receptor gene inactivation and hCGβ gene overexpression, in both males and females, wild type or genomically altered. BR B2 (B2R) accounted for 97% or more of total pituitary BRs in both models, regardless of genotype, and was present in lactotrophs, somatotrophs, and gonadotrophs. Male pituitaries displayed higher level of B2R than females, regardless of genotype. Pituitary B2R gene expression was downregulated by estrogen in both males and females but only in females by dopamine. Activation of B1R or B2R by selective pharmacological agonists induced prolactin release in male pituitaries but inhibited prolactin secretion in female pituitaries. Increased B2R content was observed in pituitaries of mutated animals developing prolactinomas, compared to their respective wild-type controls. The present study documents a novel sex-related difference in the control of prolactin secretion and suggests that kinins are involved, through B2R activation, in lactotroph function and prolactinoma development.
Collapse
Affiliation(s)
- Alejandra Abeledo-Machado
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Milagros Peña-Zanoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dana Bornancini
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - María Andrea Camilletti
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Erika Yanil Faraoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Agustina Marcial
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Susana Rulli
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Francois Alhenc-Gelas
- INSERM U1138, Universite Paris-Cite, Sorbonne Universite, Centre de Recherche des Cordeliers, Paris, France
| | - Graciela Susana Díaz-Torga
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Kinins and Kinin Receptors in Cardiovascular and Renal Diseases. Pharmaceuticals (Basel) 2021; 14:ph14030240. [PMID: 33800422 PMCID: PMC8000381 DOI: 10.3390/ph14030240] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
This review addresses the physiological role of the kallikrein–kinin system in arteries, heart and kidney and the consequences of kallikrein and kinin actions in diseases affecting these organs, especially ischemic and diabetic diseases. Emphasis is put on pharmacological and genetic studies targeting kallikrein; ACE/kininase II; and the two kinin receptors, B1 (B1R) and B2 (B2R), distinguished through the work of Domenico Regoli and his collaborators. Potential therapeutic interest and limitations of the pharmacological manipulation of B1R or B2R activity in cardiovascular and renal diseases are discussed. This discussion addresses either the activation or inhibition of these receptors, based on recent clinical and experimental studies.
Collapse
|
4
|
A Robust Bioassay of the Human Bradykinin B 2 Receptor that Extends Molecular and Cellular Studies: The Isolated Umbilical Vein. Pharmaceuticals (Basel) 2021; 14:ph14030177. [PMID: 33668382 PMCID: PMC7996148 DOI: 10.3390/ph14030177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022] Open
Abstract
Bradykinin (BK) has various physiological and pathological roles. Medicinal chemistry efforts targeted toward the widely expressed BK B2 receptor (B2R), a G-protein-coupled receptor, were primarily aimed at developing antagonists. The only B2R antagonist in clinical use is the peptide icatibant, approved to abort attacks of hereditary angioedema. However, the anti-inflammatory applications of B2R antagonists are potentially wider. Furthermore, the B2R antagonists notoriously exhibit species-specific pharmacological profiles. Classical smooth muscle contractility assays are exploited over a time scale of several hours and support determining potency, competitiveness, residual agonist activity, specificity, and reversibility of pharmacological agents. The contractility assay based on the isolated human umbilical vein, expressing B2R at physiological density, was introduced when investigating the first non-peptide B2R antagonist (WIN 64338). Small ligand molecules characterized using the assay include the exquisitely potent competitive antagonist, Pharvaris Compound 3 or the partial agonist Fujisawa Compound 47a. The umbilical vein assay is also useful to verify pharmacologic properties of special peptide B2R ligands, such as the carboxypeptidase-activated latent agonists and fluorescent probes. Furthermore, the proposed agonist effect of tissue kallikrein on the B2R has been disproved using the vein. This assay stands in between cellular and molecular pharmacology and in vivo studies.
Collapse
|
5
|
Gagnon M, Savard M, Jacques JF, Bkaily G, Geha S, Roucou X, Gobeil F. Potentiation of B2 receptor signaling by AltB2R, a newly identified alternative protein encoded in the human bradykinin B2 receptor gene. J Biol Chem 2021; 296:100329. [PMID: 33497625 PMCID: PMC7949122 DOI: 10.1016/j.jbc.2021.100329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Recent functional and proteomic studies in eukaryotes (www.openprot.org) predict the translation of alternative open reading frames (AltORFs) in mature G-protein-coupled receptor (GPCR) mRNAs, including that of bradykinin B2 receptor (B2R). Our main objective was to determine the implication of a newly discovered AltORF resulting protein, termed AltB2R, in the known signaling properties of B2R using complementary methodological approaches. When ectopically expressed in HeLa cells, AltB2R presented predominant punctate cytoplasmic/perinuclear distribution and apparent cointeraction with B2R at plasma and endosomal/vesicular membranes. The presence of AltB2R increases intracellular [Ca2+] and ERK1/2-MAPK activation (via phosphorylation) following B2R stimulation. Moreover, HEK293A cells expressing mutant B2R lacking concomitant expression of AltB2R displayed significantly decreased maximal responses in agonist-stimulated Gαq-Gαi2/3-protein coupling, IP3 generation, and ERK1/2-MAPK activation as compared with wild-type controls. Conversely, there was no difference in cell-surface density as well as ligand-binding properties of B2R and in efficiencies of cognate agonists at promoting B2R internalization and β-arrestin 2 recruitment. Importantly, both AltB2R and B2R proteins were overexpressed in prostate and breast cancers, compared with their normal counterparts suggesting new associative roles of AltB2R in these diseases. Our study shows that BDKRB2 is a dual-coding gene and identifies AltB2R as a novel positive modulator of some B2R signaling pathways. More broadly, it also supports a new, unexpected alternative proteome for GPCRs, which opens new frontiers in fields of GPCR biology, diseases, and drug discovery.
Collapse
Affiliation(s)
- Maxime Gagnon
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Savard
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-François Jacques
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Ghassan Bkaily
- Department of Immunology & Cellular Biology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Roucou
- Department of Biochemistry, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| | - Fernand Gobeil
- Department of Pharmacology & Physiology, Université de Sherbrooke, Sherbrooke, Québec, Canada; Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
6
|
Lau J, Rousseau J, Kwon D, Bénard F, Lin KS. A Systematic Review of Molecular Imaging Agents Targeting Bradykinin B1 and B2 Receptors. Pharmaceuticals (Basel) 2020; 13:ph13080199. [PMID: 32824565 PMCID: PMC7464927 DOI: 10.3390/ph13080199] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/22/2022] Open
Abstract
Kinins, bradykinin and kallidin are vasoactive peptides that signal through the bradykinin B1 and B2 receptors (B1R and B2R). B2R is constitutively expressed in healthy tissues and mediates responses such as vasodilation, fluid balance and retention, smooth muscle contraction, and algesia, while B1R is absent in normal tissues and is induced by tissue trauma or inflammation. B2R is activated by kinins, while B1R is activated by kinins that lack the C-terminal arginine residue. Perturbations of the kinin system have been implicated in inflammation, chronic pain, vasculopathy, neuropathy, obesity, diabetes, and cancer. In general, excess activation and signaling of the kinin system lead to a pro-inflammatory state. Depending on the disease context, agonism or antagonism of the bradykinin receptors have been considered as therapeutic options. In this review, we summarize molecular imaging agents targeting these G protein-coupled receptors, including optical and radioactive probes that have been used to interrogate B1R/B2R expression at the cellular and anatomical levels, respectively. Several of these preclinical agents, described herein, have the potential to guide therapeutic interventions for these receptors.
Collapse
Affiliation(s)
- Joseph Lau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - Daniel Kwon
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3 Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
7
|
Alhenc-Gelas F, Bouby N, Girolami JP. Kallikrein/K1, Kinins, and ACE/Kininase II in Homeostasis and in Disease Insight From Human and Experimental Genetic Studies, Therapeutic Implication. Front Med (Lausanne) 2019; 6:136. [PMID: 31316987 PMCID: PMC6610447 DOI: 10.3389/fmed.2019.00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023] Open
Abstract
Kallikrein-K1 is the main kinin-forming enzyme in organs in resting condition and in several pathological situations whereas angiotensin I-converting enzyme/kininase II (ACE) is the main kinin-inactivating enzyme in the circulation. Both ACE and K1 activity levels are genetic traits in man. Recent research based mainly on human genetic studies and study of genetically modified mice has documented the physiological role of K1 in the circulation, and also refined understanding of the role of ACE. Kallikrein-K1 is synthesized in arteries and involved in flow-induced vasodilatation. Endothelial ACE synthesis displays strong vessel and organ specificity modulating bioavailability of angiotensins and kinins locally. In pathological situations resulting from hemodynamic, ischemic, or metabolic insult to the cardiovascular system and the kidney K1 and kinins exert critical end-organ protective action and K1 deficiency results in severe worsening of the conditions, at least in the mouse. On the opposite, genetically high ACE level is associated with increased risk of developing ischemic and diabetic cardiac or renal diseases and worsened prognosis of these diseases. The association has been well-documented clinically while causality was established by ACE gene titration in mice. Studies suggest that reduced bioavailability of kinins is prominently involved in the detrimental effect of K1 deficiency or high ACE activity in diseases. Kinins are involved in the therapeutic effect of both ACE inhibitors and angiotensin II AT1 receptor blockers. Based on these findings, a new therapeutic hypothesis focused on selective pharmacological activation of kinin receptors has been launched. Proof of concept was obtained by using prototypic agonists in experimental ischemic and diabetic diseases in mice.
Collapse
Affiliation(s)
- Francois Alhenc-Gelas
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | - Nadine Bouby
- INSERM U1138-CRC, Paris, France.,CRC-INSERM U1138, Paris-Descartes University, Paris, France.,CRC-INSERM U1138, Sorbonne University, Paris, France
| | | |
Collapse
|
8
|
Igić R. Renin-angiotensin and kallikrein-kinin systems in diabetic retinopathy. SCRIPTA MEDICA 2019. [DOI: 10.5937/scriptamed50-23131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Gallium-68: methodology and novel radiotracers for positron emission tomography (2012–2017). Pharm Pat Anal 2018; 7:193-227. [DOI: 10.4155/ppa-2018-0016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Commercial 68Ge/68Ga generators provide a means to produce positron emission tomography agents on site without use of a cyclotron. This development has led to a rapid growth of academic literature and patents ongallium-68 (68Ga). As 68Ga positron emission tomography agents usually involve a targeting moiety attached to a metal chelator, the development lends itself to the investigation of theragnostic applications; the 68Ga-based diagnostic is utilized to determine if the biological target is present and, if so, a therapeutic isotope (e.g., 177Lu, 225Ac) can be complexed with the same scaffold to generate a corresponding radiotherapeutic. This review considers patents issued between 2012 and 2017 that contain a 68Ga-labeled molecule indexed by Chemical Abstract Services (a division of the American Chemical Society).
Collapse
|
10
|
Dubuc C, Savard M, Bovenzi V, Lessard A, Côté J, Neugebauer W, Geha S, Chemtob S, Gobeil F. Antitumor activity of cell-penetrant kinin B1 receptor antagonists in human triple-negative breast cancer cells. J Cell Physiol 2018; 234:2851-2865. [PMID: 30132865 DOI: 10.1002/jcp.27103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
High nuclear expression of G protein-coupled receptors, including kinin B1 receptors (B1R), has been observed in several human cancers, but the clinical significance of this is unknown. We put forward the hypothesis that these "nuclearized" kinin B1R contribute to tumorigenicity and can be a new target in anticancer strategies. Our initial immunostaining and ultrastructural electron microscopy analyses demonstrated high B1R expression predominantly located at internal/nuclear compartments in the MDA-MB-231 triple-negative breast cancer (TNBC) cell line as well as in clinical samples of patients with TNBC. On the basis of these findings, in the present study, we evaluated the anticancer therapeutic potential of newly identified, cell-permeable B1R antagonists in MDA-MB-231 cells (ligand-receptor binding/activity assays and LC-MS/MS analyses). We found that these compounds (SSR240612, NG67, and N2000) were more toxic to MDA-MB-231 cells in comparison with low- or non-B1R expressing MCF-10A normal human mammary epithelial cells and COS-1 cells, respectively (clonogenic, MTT proliferative/cytocidal assays, and fluorescence-activated cell-sorting (FACS)-based apoptosis analyses). By comparison, the peptide B1R antagonist R954 unable to cross cell membrane failed to produce anticancer effects. Furthermore, the putative mechanisms underlying the anticancer activities of cell-penetrant B1R antagonists were assessed by analyzing cell cycle regulation and signaling molecules related to cell survival and apoptosis (FACS and western blot). Finally, drug combination experiments showed that cell-penetrant B1R antagonists can cooperate with suboptimal doses of chemotherapeutic agents (doxorubicin and paclitaxel) to promote TNBC death. This study provides evidence on the potential value of internally acting kinin B1R antagonists in averting growth of breast cancer.
Collapse
Affiliation(s)
- Céléna Dubuc
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Martin Savard
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Veronica Bovenzi
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Andrée Lessard
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Witold Neugebauer
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Sylvain Chemtob
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, Québec, Canada
| | - Fernand Gobeil
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Institute of Pharmacology, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
11
|
Desposito D, Zadigue G, Taveau C, Adam C, Alhenc-Gelas F, Bouby N, Roussel R. Neuroprotective effect of kinin B1 receptor activation in acute cerebral ischemia in diabetic mice. Sci Rep 2017; 7:9410. [PMID: 28842604 PMCID: PMC5572700 DOI: 10.1038/s41598-017-09721-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
Activation of the kallikrein-kinin system enhances cardiac and renal tolerance to ischemia. Here we investigated the effects of selective agonists of kinin B1 or B2 receptor (R) in brain ischemia-reperfusion in diabetic and non-diabetic mice. The role of endogenous kinins was assessed in tissue kallikrein deficient mice (TK−/−). Mice underwent 60min-middle cerebral artery occlusion (MCAO), eight weeks after type 1-diabetes induction. Treatment with B1R-, B2R-agonist or saline was started at reperfusion. Neurological deficit (ND), infarct size (IS), brain water content (BWC) were measured at day 0, 1 and 2 after injury. MCAO induced exaggerated ND, mortality and IS in diabetic mice. B2R-agonist increased ND and mortality to 60% and 80% in non-diabetic and diabetic mice respectively, by mechanisms involving hemodynamic failure and renal insufficiency. TK−/− mice displayed reduced ND and IS compared to wild-type littermate, consistent with suppression of B2R activity. B1R mRNA level increased in ischemic brain but B1R-agonist had no effect on ND, mortality or IS in non-diabetic mice. In contrast, in diabetic mice, B1R-agonist tested at two doses significantly reduced ND by 42–52% and IS by 66–71%, without effect on BWC or renal function. This suggests potential therapeutic interest of B1R agonism for cerebral protection in diabetes.
Collapse
Affiliation(s)
- Dorinne Desposito
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | | | - Christopher Taveau
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Clovis Adam
- Anatomopathology Department, Kremlin-Bicêtre Hospital, Paris, France
| | - François Alhenc-Gelas
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Paris Descartes University, Paris, France.,Pierre et Marie Curie University, Paris, France
| | - Nadine Bouby
- INSERM U 1138, Cordeliers Research Center, Paris, France. .,Paris Descartes University, Paris, France. .,Pierre et Marie Curie University, Paris, France.
| | - Ronan Roussel
- INSERM U 1138, Cordeliers Research Center, Paris, France.,Denis Diderot University, Paris, France.,Diabetology, Endocrinology and Nutrition Department, DHU FIRE, Bichat Hospital, AP-HP, Paris, France
| |
Collapse
|
12
|
Desposito D, Waeckel L, Potier L, Richer C, Roussel R, Bouby N, Alhenc-Gelas F. Kallikrein(K1)-kinin-kininase (ACE) and end-organ damage in ischemia and diabetes: therapeutic implications. Biol Chem 2017; 397:1217-1222. [PMID: 27622831 DOI: 10.1515/hsz-2016-0228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/19/2016] [Indexed: 11/15/2022]
Abstract
Genetic and pharmacological studies, clinical and experimental, focused on kallikrein-K1, kinin receptors and ACE/kininase II suggest that kinin release in the settings of ischemia or diabetes reduces organ damage, especially in the heart and kidney. Kinin bioavailability may be a limiting factor for efficacy of current kinin-potentiating drugs, like ACE inhibitors. Primary activation of kinin receptors by prototypic pharmacological agonists, peptidase-resistant, selective B1 or B2, displays therapeutic efficacy in experimental cardiac and peripheral ischemic and diabetic diseases. B1R agonism was especially efficient in diabetic animals and had no unwanted effects. Clinical development of kinin receptor agonists may be warranted.
Collapse
|
13
|
Amouroux G, Zhang Z, Pan J, Jenni S, Zhang C, Hundal-Jabal N, Colpo N, Zeisler J, Lin KS, Bénard F. Synthesis and evaluation of a 68Ga-labeled bradykinin B1 receptor agonist for imaging with positron emission tomography. Bioorg Med Chem 2017; 25:690-696. [PMID: 27908753 DOI: 10.1016/j.bmc.2016.11.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
Abstract
A novel 68Ga-labeled bradykinin B1 receptor (B1R) agonist, 68Ga-Z01115, was synthesized and evaluated for imaging with positron emission tomography (PET). Z01115 exhibited good binding affinity (Ki=25.4±5.1nM) to hB1R. 68Ga-Z01115 was prepared in 74±5 decay-corrected radiochemical yield with >99% radiochemical purity and 155±89GBq/µmol (4.2±2.4Ci/μmol) specific activity. 68Ga-Z01115 was stable in vitro in mouse plasma (93% remaining intact after 60min incubation), and relatively stable in vivo (51±5% remaining intact at 5min post-injection). PET imaging and biodistribution studies in mice showed that 68Ga-Z01115 cleared rapidly from nontarget tissues/organs, and generated high target-to-nontarget contrast images. The uptake of 68Ga-Z01115 in B1R-positive (B1R+) tumor was 5.65±0.59%ID/g at 1h post-injection. Average contrast ratios of B1R+ tumor-to-B1R- tumor, -to-blood and -to-muscle were 24.3, 24.4 and 82.9, respectively. Uptake of 68Ga-Z01115 in B1R+ tumors was reduced by ∼90% with co-injection of cold standard, confirming it was mediated by B1R. Our data suggest that 68Ga-Z01115 is a promising tracer for imaging the expression of B1R that is overexpressed in a variety of cancers.
Collapse
Affiliation(s)
- Guillaume Amouroux
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jinhe Pan
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Silvia Jenni
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Chengcheng Zhang
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Navjit Hundal-Jabal
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Nadine Colpo
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Jutta Zeisler
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 3350-950 West 10th Avenue, Vancouver, British Columbia V5Z 4E3, Canada.
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Agency, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada; Department of Radiology, University of British Columbia, 3350-950 West 10th Avenue, Vancouver, British Columbia V5Z 4E3, Canada.
| |
Collapse
|
14
|
Savard M, Côté J, Tremblay L, Neugebauer W, Regoli D, Gariépy S, Hébert N, Gobeil F. Safety and pharmacokinetics of a kinin B1 receptor peptide agonist produced with different counter-ions. Biol Chem 2016; 397:365-72. [PMID: 26565554 DOI: 10.1515/hsz-2015-0246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/07/2015] [Indexed: 11/15/2022]
Abstract
Several studies have shown the potential therapeutic utility of kinin B1 receptor (B1R) peptide agonists in neurological and ischemic cardiovascular diseases and brain cancer. Preclinical safety studies are a prerequisite for further drug development. The objectives of this study were to determine the acute toxicity and pharmacokinetics of the peptide B1R agonist, SarLys[dPhe8]desArg9-bradykinin (NG29), as trifluoroacetate (TFacetate) or acetate salt form, following intravenous injection in rats. A maximum tolerated dose (MTD) of NG29-TFacetate was established at 75 mg/kg from the results of a dose range-finding study (up to 200 mg/kg). The short-term (4-day) repeat-dose toxicity study of NG29, using its MTD value, showed that NG29-acetate exhibited minimal non-adverse clinical pathology changes in hematology, coagulation, clinical chemistry and urine parameters and severe kidney histopathological changes characterized by renal tubular degeneration. No such effects were observed with NG29-TFacetate. At the injection site, NG29-TFacetate was considered to be more locally irritating when compared to the acetate form. The extent of exposure and half-life values of NG29-TFacetate were comparable to the acetate form (AUC0-α of 10.2 mg/l*h vs. 9.9 mg/l*h; T1/2 of 2.3 h vs. 2.4 h). This study shows that in rats NG29-TFacetate exhibits a superior tolerability profile compared with the peptide acetate form.
Collapse
|
15
|
Improvement of skin wound healing in diabetic mice by kinin B2 receptor blockade. Clin Sci (Lond) 2015; 130:45-56. [PMID: 26443866 DOI: 10.1042/cs20150295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 10/06/2015] [Indexed: 01/11/2023]
Abstract
Impaired skin wound healing is a major medical problem in diabetic subjects. Kinins exert a number of vascular and other actions limiting organ damage in ischaemia or diabetes, but their role in skin injury is unknown. We investigated, through pharmacological manipulation of bradykinin B1 and B2 receptors (B1R and B2R respectively), the role of kinins in wound healing in non-diabetic and diabetic mice. Using two mouse models of diabetes (streptozotocin-induced and db/db mice) and non-diabetic mice, we assessed the effect of kinin receptor activation or inhibition by subtype-selective pharmacological agonists (B1R and B2R) and antagonist (B2R) on healing of experimental skin wounds. We also studied effects of agonists and antagonist on keratinocytes and fibroblasts in vitro. Levels of Bdkrb1 (encoding B1R) and Bdkrb2 (encoding B2R) mRNAs increased 1-2-fold in healthy and wounded diabetic skin compared with in non-diabetic skin. Diabetes delayed wound healing. The B1R agonist had no effect on wound healing. In contrast, the B2R agonist impaired wound repair in both non-diabetic and diabetic mice, inducing skin disorganization and epidermis thickening. In vitro, B2R activation unbalanced fibroblast/keratinocyte proliferation and increased keratinocyte migration. These effects were abolished by co-administration of B2R antagonist. Interestingly, in the two mouse models of diabetes, the B2R antagonist administered alone normalized wound healing. This effect was associated with the induction of Ccl2 (encoding monocyte chemoattractant protein 1)/Tnf (encoding tumour necrosis factor α) mRNAs. Thus stimulation of kinin B2 receptor impairs skin wound healing in mice. B2R activation occurs in the diabetic skin and delays wound healing. B2R blockade improves skin wound healing in diabetic mice and is a potential therapeutic approach to diabetic ulcers.
Collapse
|
16
|
Desposito D, Potier L, Chollet C, Gobeil F, Roussel R, Alhenc-Gelas F, Bouby N, Waeckel L. Kinin receptor agonism restores hindlimb postischemic neovascularization capacity in diabetic mice. J Pharmacol Exp Ther 2014; 352:218-26. [PMID: 25398240 DOI: 10.1124/jpet.114.219196] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Limb ischemia is a major complication of thromboembolic diseases. Diabetes worsens prognosis by impairing neovascularization. Genetic or pharmacological inactivation of the kallikrein-kinin system aggravates limb ischemia in nondiabetic animals, whereas angiotensin I-converting enzyme/kininase II inhibition improves outcome. The role of kinins in limb ischemia in the setting of diabetes is not documented. We assessed whether selective activation of kinin receptors by pharmacological agonists can influence neovascularization in diabetic mice with limb ischemia and have a therapeutic effect. Selective pseudopeptide kinin B1 or B2 receptor agonists resistant to peptidase action were administered by osmotic minipumps at a nonhypotensive dosage for 14 days after unilateral femoral artery ligation in mice previously rendered diabetic by streptozotocin. Comparison was made with ligatured, nonagonist-treated nondiabetic and diabetic mice. Diabetes reduced neovascularization, assessed by microangiography and histologic capillary density analysis, by roughly 40%. B1 receptor agonist or B2 receptor agonist similarly restored neovascularization in diabetic mice. Neovascularization in agonist-treated diabetic mice was indistinguishable from nondiabetic mice. Both treatments restored blood flow in the ischemic hindfoot, measured by laser-Doppler perfusion imaging. Macrophage infiltration increased 3-fold in the ischemic gastrocnemius muscle during B1 receptor agonist or B2 receptor agonist treatment, and vascular endothelial growth factor (VEGF) level increased 2-fold. Both treatments increased, by 50-100%, circulating CD45/CD11b-positive monocytes and CD34(+)/VEGFR2(+) progenitor cells. Thus, selective pharmacological activation of B1 or B2 kinin receptor overcomes the effect of diabetes on postischemic neovascularization and restores tissue perfusion through monocyte/macrophage mobilization. Kinin receptors are potential therapeutic targets in limb ischemia in diabetes.
Collapse
Affiliation(s)
- Dorinne Desposito
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| | - Louis Potier
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| | - Catherine Chollet
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| | - Fernand Gobeil
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| | - Ronan Roussel
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| | - Francois Alhenc-Gelas
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| | - Nadine Bouby
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| | - Ludovic Waeckel
- Institut National de la Sante et de la Recherche Medicale U1138, Université Paris Descartes, and Université Pierre et Marie Curie, Paris, France (D.D., L.P., C.C., R.R., F.A.-G., N.B., L.W.); Université Paris Diderot, and Diabétologie-Endocrinologie-Nutrition, DHU FIRE, Hôpital Bichat, AP-HP, Paris, France (L.P., R.R.); and Department of Pharmacology, University of Sherbrooke, Sherbrooke, Quebec, Canada (F.G.)
| |
Collapse
|
17
|
Girolami JP, Blaes N, Bouby N, Alhenc-Gelas F. Genetic manipulation and genetic variation of the kallikrein-kinin system: impact on cardiovascular and renal diseases. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:145-196. [PMID: 25130042 DOI: 10.1007/978-3-319-06683-7_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of the kallikrein-kinin system (KKS) in mice, with either gain or loss of function, and study of human genetic variability in KKS components which has been well documented at the phenotypic and genomic level, have allowed recognizing the physiological role of KKS in health and in disease. This role has been especially documented in the cardiovascular system and the kidney. Kinins are produced at slow rate in most organs in resting condition and/or inactivated quickly. Yet the KKS is involved in arterial function and in renal tubular function. In several pathological situations, kinin production increases, kinin receptor synthesis is upregulated, and kinins play an important role, whether beneficial or detrimental, in disease outcome. In the setting of ischemic, diabetic or hemodynamic aggression, kinin release by tissue kallikrein protects against organ damage, through B2 and/or B1 bradykinin receptor activation, depending on organ and disease. This has been well documented for the ischemic or diabetic heart, kidney and skeletal muscle, where KKS activity reduces oxidative stress, limits necrosis or fibrosis and promotes angiogenesis. On the other hand, in some pathological situations where plasma prekallikrein is inappropriately activated, excess kinin release in local or systemic circulation is detrimental, through oedema or hypotension. Putative therapeutic application of these clinical and experimental findings through current pharmacological development is discussed in the chapter.
Collapse
|
18
|
Kaygısız Z, Kaygısız B, Kılınç E. The effect of Des-Arg9-bradykinin and bradykinin-potentiating peptide C on isolated rat hearts. ACTA PHYSIOLOGICA HUNGARICA 2013; 100:280-8. [PMID: 24058087 DOI: 10.1556/aphysiol.100.2013.3.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Des-Arg9-bradykinin and bradykinin-potentiating peptide C (BPPC) may contribute to the regulation of cardiovascular function. Therefore, we studied effects of these peptides on coronary perfusion pressure (CPP), heart rate, left ventricular developed pressure (LVDP) and maximum rate of increase of left ventricular pressure (+dP/dtmax). METHODS The isolated rat hearts were perfused with modified Krebs-Henseleit solution. RESULTS Infusion of 10, 100 and 1000 nM Des-Arg9-bradykinin decreased CPP (-13.6, -14.8 and -19.0%), LVDP (-16.5, -21.0 and -30.7%) and +dP/dtmax (-11.8, -17.8 and -23.7%), respectively (p < 0.001). Ten or 100 nM Des-Arg9-bradykinin did not alter heart rate, but 1000 nM increased it (+11.3%, p < 0.01). One, 10 and 100 nM BBPC reduced CPP (-16.3, -28.5 and -47.5%), LVDP (-12.6, -19.6 and -21.3%) and +dP/dtmax (-8.7, -18.6 and -20.3%), respectively (p < 0.001). BPPC increased heart rate at 1 nM (+9.6%, p < 0.05 ) and at 10 nM (+14.2%, p < 0.01), however 100 nM decreased it (-15.3%, p < 0.001). CONCLUSIONS This study evidences that Des-Arg9-bradykinin and BPPC possess vasodilatory effect with modest negative inotropic action. Furthermore, high-dose of Des-Arg9-bradykinin and low-dose of BPPC may produce a tachycardic action, but high dose of BBPC may cause a bradycardic action.
Collapse
Affiliation(s)
- Z Kaygısız
- Eskisehir Osmangazi University, Medical Faculty Department of Physiology Meselik Kampusu 26480 Eskisehir Turkey
| | | | | |
Collapse
|
19
|
Côté J, Savard M, Neugebauer W, Fortin D, Lepage M, Gobeil F. Dual kinin B1 and B2 receptor activation provides enhanced blood-brain barrier permeability and anticancer drug delivery into brain tumors. Cancer Biol Ther 2013; 14:806-11. [PMID: 23792591 DOI: 10.4161/cbt.25327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The low permeability of the BBB is largely responsible for the lack of effective systemic chemotherapy against primary and metastatic brain tumors. Kinin B1R and B2R have been shown to mediate reversible tumor-selective BBB disruption in preclinical animal models. We investigated whether co-administration of two novel potent kinin B1R and B2R agonists offers an advantage over administering each agonist alone for enhancing BBB permeability and tumor targeting of drugs in the malignant F98 glioma rat model. A new covalent kinin heterodimer that equally stimulates B1R and B2R was also constructed for the purpose of our study. We found that co-administration of B1R and B2R agonists, or alternatively administration of the kinin heterodimer more effectively delivered the MRI contrast agent Gd-DTPA and the anticancer drug carboplatin to brain tumors and surrounding tissues than the agonists alone (determined by MRI and ICP-MS methods). Importantly, the efficient delivery of carboplatin by the dual kinin receptor targeting on the BBB translated into increased survival of glioma-bearing rats. Thus, this report describes a potential strategy for maximizing the brain bioavailability and therapeutic efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jérôme Côté
- Department of Pharmacology; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada; Institute of Pharmacology (IPS); Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada
| | - Martin Savard
- Department of Pharmacology; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada; Institute of Pharmacology (IPS); Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada
| | - Witold Neugebauer
- Department of Pharmacology; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada; Institute of Pharmacology (IPS); Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada
| | - David Fortin
- Institute of Pharmacology (IPS); Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada; Department of Surgery; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada
| | - Martin Lepage
- Institute of Pharmacology (IPS); Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada; Department of Nuclear Medicine and Radiobiology; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada
| | - Fernand Gobeil
- Department of Pharmacology; Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada; Institute of Pharmacology (IPS); Faculty of Medicine and Health Sciences; Université de Sherbrooke; Sherbrooke, Canada
| |
Collapse
|
20
|
Potier L, Waeckel L, Vincent MP, Chollet C, Gobeil F, Marre M, Bruneval P, Richer C, Roussel R, Alhenc-Gelas F, Bouby N. Selective Kinin Receptor Agonists as Cardioprotective Agents in Myocardial Ischemia and Diabetes. J Pharmacol Exp Ther 2013; 346:23-30. [DOI: 10.1124/jpet.113.203927] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
21
|
Impact of kinins in the treatment of cardiovascular diseases. Pharmacol Ther 2012; 135:94-111. [DOI: 10.1016/j.pharmthera.2012.04.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/02/2012] [Indexed: 12/24/2022]
|
22
|
Côté J, Bovenzi V, Savard M, Dubuc C, Fortier A, Neugebauer W, Tremblay L, Müller-Esterl W, Tsanaclis AM, Lepage M, Fortin D, Gobeil F. Induction of selective blood-tumor barrier permeability and macromolecular transport by a biostable kinin B1 receptor agonist in a glioma rat model. PLoS One 2012; 7:e37485. [PMID: 22629405 PMCID: PMC3357387 DOI: 10.1371/journal.pone.0037485] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/24/2012] [Indexed: 12/24/2022] Open
Abstract
Treatment of malignant glioma with chemotherapy is limited mostly because of delivery impediment related to the blood-brain tumor barrier (BTB). B1 receptors (B1R), inducible prototypical G-protein coupled receptors (GPCR) can regulate permeability of vessels including possibly that of brain tumors. Here, we determine the extent of BTB permeability induced by the natural and synthetic peptide B1R agonists, LysdesArg9BK (LDBK) and SarLys[dPhe8]desArg9BK (NG29), in syngeneic F98 glioma-implanted Fischer rats. Ten days after tumor inoculation, we detected the presence of B1R on tumor cells and associated vasculature. NG29 infusion increased brain distribution volume and uptake profiles of paramagnetic probes (Magnevist and Gadomer) at tumoral sites (T1-weighted imaging). These effects were blocked by B1R antagonist and non-selective cyclooxygenase inhibitors, but not by B2R antagonist and non-selective nitric oxide synthase inhibitors. Consistent with MRI data, systemic co-administration of NG29 improved brain tumor delivery of Carboplatin chemotherapy (ICP-Mass spectrometry). We also detected elevated B1R expression in clinical samples of high-grade glioma. Our results documented a novel GPCR-signaling mechanism for promoting transient BTB disruption, involving activation of B1R and ensuing production of COX metabolites. They also underlined the potential value of synthetic biostable B1R agonists as selective BTB modulators for local delivery of different sized-therapeutics at (peri)tumoral sites.
Collapse
Affiliation(s)
- Jérôme Côté
- Department of Pharmacology, University Hospital, Frankfurt, Germany
- Department of Nuclear Medicine and Radiobiology, University Hospital, Frankfurt, Germany
- Institute of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Veronica Bovenzi
- Department of Pharmacology, University Hospital, Frankfurt, Germany
- Institute of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Savard
- Department of Pharmacology, University Hospital, Frankfurt, Germany
- Institute of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Céléna Dubuc
- Department of Pharmacology, University Hospital, Frankfurt, Germany
- Institute of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Audrey Fortier
- Department of Pharmacology, University Hospital, Frankfurt, Germany
| | | | - Luc Tremblay
- Department of Nuclear Medicine and Radiobiology, University Hospital, Frankfurt, Germany
| | | | - Ana-Maria Tsanaclis
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Department of Nuclear Medicine and Radiobiology, University Hospital, Frankfurt, Germany
- Institute of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - David Fortin
- Department of Surgery, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Institute of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fernand Gobeil
- Department of Pharmacology, University Hospital, Frankfurt, Germany
- Institute of Pharmacology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- * E-mail:
| |
Collapse
|