1
|
Komisarczuk AZ, Kongshaug H, Li M, Nilsen F. RNAi mediated myosuppressin deficiency affects muscle development and survival in the salmon louse (Lepeophtheirus salmonis). Sci Rep 2019; 9:6944. [PMID: 31061463 PMCID: PMC6502818 DOI: 10.1038/s41598-019-43515-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/23/2019] [Indexed: 12/05/2022] Open
Abstract
Muscle activity is regulated by stimulatory and inhibitory neuropeptides allowing for contraction and relaxation. In Arthropods, one of the important myoinhibitors is Myosuppressin, belonging to FMRFamide-like peptides, that was shown to have inhibitory effects on visceral muscle contraction and to regulate vital physiological processes including reproduction or feeding. We have identified myosuppressin in salmon louse Lepeophtheirus salmonis (LsalMS) and systematically characterised its function and complex abnormalities emerging after LsalMS knockdown by RNAi in all developmental stages in this species. Immunohistochemistry analysis localized the LsalMS mainly to the central nervous system, but also to the vital organs within the alimentary tract and the reproductive system. The most striking feature of LsalMS deficiency during lice development was severe reduction of the muscle content, with abnormalities detected in both the visceral and skeletal muscles. Moreover, down-regulation of LsalMS affects moulting, spermatophore deposition and feeding by affecting development of the intestinal wall and increasing its contraction frequency.
Collapse
Affiliation(s)
- Anna Z Komisarczuk
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway.
| | - Heidi Kongshaug
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway
| | - Ming Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Frank Nilsen
- Sea Lice Research Centre, Department of Biological Sciences, University of Bergen, Thormøhlensgate 53 A/B, 5008, Bergen, Norway
| |
Collapse
|
2
|
Gough CS, Fairlamb GM, Bell P, Nachman RJ, Audsley N, Isaac RE. Peptidergic control in a fruit crop pest: The spotted-wing drosophila, Drosophila suzukii. PLoS One 2017; 12:e0188021. [PMID: 29125862 PMCID: PMC5681264 DOI: 10.1371/journal.pone.0188021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/29/2017] [Indexed: 11/23/2022] Open
Abstract
Neuropeptides play an important role in the regulation of feeding in insects and offer potential targets for the development of new chemicals to control insect pests. A pest that has attracted much recent attention is the highly invasive Drosophila suzukii, a polyphagous pest that can cause serious economic damage to soft fruits. Previously we showed by mass spectrometry the presence of the neuropeptide myosuppressin (TDVDHVFLRFamide) in the nerve bundle suggesting that this peptide is involved in regulating the function of the crop, which in adult dipteran insects has important roles in the processing of food, the storage of carbohydrates and the movement of food into the midgut for digestion. In the present study antibodies that recognise the C-terminal RFamide epitope of myosuppressin stain axons in the crop nerve bundle and reveal peptidergic fibres covering the surface of the crop. We also show using an in vitro bioassay that the neuropeptide is a potent inhibitor (EC50 of 2.3 nM) of crop contractions and that this inhibition is mimicked by the non-peptide myosuppressin agonist, benzethonium chloride (Bztc). Myosuppressin also inhibited the peristaltic contractions of the adult midgut, but was a much weaker agonist (EC50 = 5.7 μM). The oral administration of Bztc (5 mM) in a sucrose diet to adult female D. suzukii over 4 hours resulted in less feeding and longer exposure to dietary Bztc led to early mortality. We therefore suggest that myosuppressin and its cognate receptors are potential targets for disrupting feeding behaviour of adult D. suzukii.
Collapse
Affiliation(s)
- Caroline S. Gough
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Grace M. Fairlamb
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Petra Bell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ronald J. Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, United States of America
| | | | - R. Elwyn Isaac
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Jiang H, Kim D, Dobesh S, Evans JD, Nachman RJ, Kaczmarek K, Zabrocki J, Park Y. Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor. Sci Rep 2016; 6:19547. [PMID: 26817786 PMCID: PMC4730192 DOI: 10.1038/srep19547] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/13/2015] [Indexed: 01/08/2023] Open
Abstract
The varroa mite, Varroa destructor, is a devastating ectoparasite of the honey bees Apis mellifera and A. cerana. Control of these mites in beehives is a challenge in part due to the lack of toxic agents that are specific to mites and not to the host honey bee. In searching for a specific toxic target of varroa mites, we investigated two closely related neuropeptidergic systems, tachykinin-related peptide (TRP) and natalisin (NTL), and their respective receptors. Honey bees lack both NTL and the NTL receptor in their genome sequences, providing the rationale for investigating these receptors to understand their specificities to various ligands. We characterized the receptors for NTL and TRP of V. destructor (VdNTL-R and VdTRP-R, respectively) and for TRP of A. mellifera (AmTRP-R) in a heterologous reporter assay system to determine the activities of various ligands including TRP/NTL peptides and peptidomimetics. Although we found that AmTRP-R is highly promiscuous, activated by various ligands including two VdNTL peptides when a total of 36 ligands were tested, we serendipitously found that peptides carrying the C-terminal motif -FWxxRamide are highly specific to VdTRP-R. This motif can serve as a seed sequence for designing a VdTRP-R-specific agonist.
Collapse
Affiliation(s)
- Hongbo Jiang
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing 400715, People’s Republic of China
| | - Donghun Kim
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Sharon Dobesh
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| | - Jay D. Evans
- Bee Research Laboratory, BARC-E, USDA-Agricultural Research Service, Beltsville, MD 20705, USA
| | - Ronald J. Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
| | - Krzysztof Kaczmarek
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
- Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Janusz Zabrocki
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, USDA, 2881 F/B Road, College Station, TX 77845, United States
- Institute of Organic Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
4
|
Audsley N, Matthews HJ, Down RE, Weaver RJ. Neuropeptides associated with the central nervous system of the cabbage root fly, Delia radicum (L). Peptides 2011; 32:434-40. [PMID: 20869420 DOI: 10.1016/j.peptides.2010.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 11/23/2022]
Abstract
The peptidome of the central nervous system of adult cabbage root fly, Delia radicum (L) was investigated using matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS). Over twenty neuropeptides were identified from three different tissue sources, the combined brain/suboesophageal ganglion (SOG), the retrocerebral complex, and the thoracic-abdominal ganglion (TAG). A number of peptides were identified in all three tissues, including allatostatins, short neuropeptide F-like peptides, corazonin, a pyrokinin, and a myosuppressin. Adipokinetic hormone was restricted to the retrocerebral complex. Other peptides, including FMRFamides and sulfakinins were detected only in the brain/SOG and TAG. Some peptides, notably myoinhibitory peptides and tachykinins, which have been identified in other fly species, were not detected in any tissue sample. This study has structurally characterized for the first time, the neuropeptides from adult D. radicum.
Collapse
Affiliation(s)
- Neil Audsley
- The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK.
| | | | | | | |
Collapse
|
5
|
Hariton A, Ben-Aziz O, Davidovitch M, Altstein M. Bioavailability of backbone cyclic PK/PBAN neuropeptide antagonists - inhibition of sex pheromone biosynthesis elicited by the natural mechanism in Heliothis peltigera females. FEBS J 2010; 277:1035-44. [DOI: 10.1111/j.1742-4658.2009.07547.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Altstein M, Nässel DR. Neuropeptide signaling in insects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 692:155-65. [PMID: 21189678 DOI: 10.1007/978-1-4419-6902-6_8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neuropeptides represent the largest single class of signal compounds and are involved in regulation of development, growth, reproduction, metabolism and behavior of insects. Over the last few years there has been a tremendous increase in our knowledge of neuropeptide signaling due to genome sequencing, peptidomics, gene micro arrays, receptor characterization and targeted gene interference combined with physiological and behavior analysis. In this chapter we review the current knowledge of structure and distribution of insect neuropeptides and their receptors, as well as their diverse functions. We also discuss peptide biosynthesis, processing and expression, as well as classification of insect neuropeptides. Special attention is paid to the role insect neuropeptides play as potential targets for pest management and as a basis for development of insect control agents employing the rational/structural design approaches.
Collapse
Affiliation(s)
- Miriam Altstein
- Department of Entomology, The Volcani Center, Bet Dagan, 50250 Israel.
| | | |
Collapse
|
7
|
Hariton A, Ben-Aziz O, Davidovitch M, Zubrzak P, Nachman RJ, Altstein M. Bioavailability of beta-amino acid and C-terminally derived PK/PBAN analogs. Peptides 2009; 30:2174-81. [PMID: 19465077 DOI: 10.1016/j.peptides.2009.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
The ability of linear beta-amino acid substituted peptides (PK-betaA-1: Ac-YFT[beta(3)P]RLa; PK-betaA-2: Ac-Y[beta(3)homoF]TPRLa; PK-betaA-3: Ac-Y[beta(3)F]TPRLa; PK-betaA-4: Ac-[beta(3)F]FT[beta(3)P]RLa) and unsubstituted analogs (Ac-YFTPRLa and YFTPRLa) of the pyrokinin(PK)/pheromone biosynthesis-activating neuropeptide (PBAN) family to penetrate the insect cuticle and exert biological activity (i.e., stimulate sex pheromone biosynthesis), was tested by topical application on Heliothis peltigera moths. The present results clearly indicate that small linear synthetic peptides can penetrate the cuticle very efficiently by contact application and activate their target organ. The time responses of the peptides applied in DDW and DMSO were tested and the activities of topically applied and injected peptides were compared. The results clearly indicate that PK-betaA-4 and PK-betaA-3 exhibited high bioavailability (ability to penetrate through the cuticle and exertion of bioactivity) with the latter showing longer persistence in both solvents than any other analog in the study; indicative that incorporation of a beta-amino acid at the Phe(2) position can enhance longevity in topical PK/PBAN analogs. PK-betaA-4 was significantly more active in DMSO than in DDW, and significantly more active than the parent peptide LPK in DMSO. PK-betaA-1 and PK-betaA-2 exhibited negligible activity. Interestingly, Ac-YFTPRLa was highly potent in both solvents; its activity in DDW did not differ from that of PK-betaA-4 and PK-betaA-3, and was higher than that of LPK. Even the unacylated peptide YFTPRLa was active in both solvents, at a similar level to LPK. Topically applied PK-betaA-4 and Ac-YFTPRLa exhibited significantly higher activity than the injected peptides. PK-betaA-3 and YFTPRLa were equally potent in both routes of administration.
Collapse
Affiliation(s)
- Aliza Hariton
- Department of Entomology, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | | | |
Collapse
|