1
|
Shao H, Liu W, Hong H, Guo K, Chen J, Li Q, Su M, Huang X, Hu J. Evidence for Bxy-npr-21 on controlling juveniles' growth and modulating male sexual arousal: from molecules to behaviors. PEST MANAGEMENT SCIENCE 2025. [PMID: 39822134 DOI: 10.1002/ps.8633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Bursaphelenchus xylophilus is considered a quarantine plant nematode species, that causes major damage to pine ecosystems globally. However, there are few reports on the identification and function of the sex pheromone receptors involved in mating. The function of Bxy-npr-21 as a potential sex pheromone receptor gene was verified from molecules to behaviors in this study. RESULTS Here, we firstly report that Bxy-npr-21 is a receptor gene involved in sexual attraction. The bioinformatic analysis indicated that the Bxy-npr-21 gene in B. xylophilus encodes a GPCR. The expression characterization for Bxy-npr-21 showed that it is widely expressed in whole body of larvae and sex organs of adults. The RNAi results suggested that the Bxy-npr-21 gene was involved mainly in movement, feeding, and mating. Sexual arousal experiments further validated that the Bxy-npr-21 gene was involved in the activation of males by female chemical signaling. CONCLUSIONS Our results strongly suggest that the Bxy-npr-21 gene is a key gene that regulates nematode growth, development and reproduction. The results of this study lay the foundation for revealing the molecular mechanisms of growth and reproduction of B. xylophilus. It can also provide an important basis for further control of B. xylophilus. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hudie Shao
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Wenyi Liu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Huan Hong
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Kai Guo
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jing Chen
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Quan Li
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Miao Su
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Xiaofang Huang
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| | - Jiafu Hu
- College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, 311300, China
| |
Collapse
|
2
|
Sun F, Zhou K, Tian KY, Zhang XY, Liu W, Wang J, Zhong CP, Qiu JH, Zha DJ. Atrial Natriuretic Peptide Promotes Neurite Outgrowth and Survival of Cochlear Spiral Ganglion Neurons in vitro Through NPR-A/cGMP/PKG Signaling. Front Cell Dev Biol 2021; 9:681421. [PMID: 34268307 PMCID: PMC8276373 DOI: 10.3389/fcell.2021.681421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a dominant public health issue affecting millions of people around the globe, which is correlated with the irreversible deterioration of the hair cells and spiral ganglion neurons (SGNs) within the cochlea. Strategies using bioactive molecules that regulate neurite regeneration and neuronal survival to reestablish connections between auditory epithelium or implanted electrodes and SGN neurites would become attractive therapeutic candidates for SNHL. As an intracellular second messenger, cyclic guanosine-3’,5’-monophosphate (cGMP) can be synthesized through activation of particulate guanylate cyclase-coupled natriuretic peptide receptors (NPRs) by natriuretic peptides, which in turn modulates multiple aspects of neuronal functions including neuronal development and neuronal survival. As a cardiac-derived hormone, atrial natriuretic peptide (ANP), and its specific receptors (NPR-A and NPR-C) are broadly expressed in the nervous system where they might be involved in the maintenance of diverse neural functions. Despite former literatures and our reports indicating the existence of ANP and its receptors within the inner ear, particularly in the spiral ganglion, their potential regulatory mechanisms underlying functional properties of auditory neurons are still incompletely understood. Our recently published investigation revealed that ANP could promote the neurite outgrowth of SGNs by activating NPR-A/cGMP/PKG cascade in a dose-dependent manner. In the present research, the influence of ANP and its receptor-mediated downstream signaling pathways on neurite outgrowth, neurite attraction, and neuronal survival of SGNs in vitro was evaluated by employing cultures of organotypic explant and dissociated neuron from postnatal rats. Our data indicated that ANP could support and attract neurite outgrowth of SGNs and possess a high capacity to improve neuronal survival of SGNs against glutamate-induced excitotoxicity by triggering the NPR-A/cGMP/PKG pathway. The neuroregenerative and neuroprotective effects of ANP/NPRA/cGMP/PKG-dependent signaling on SGNs would represent an attractive therapeutic candidate for hearing impairment.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Zhou
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke-Yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui-Ping Zhong
- Department of Otolaryngology-Head and Neck Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Jian-Hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ding-Jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Sun F, Zhou K, Tian KY, Wang J, Qiu JH, Zha DJ. Atrial Natriuretic Peptide Improves Neurite Outgrowth from Spiral Ganglion Neurons In Vitro through a cGMP-Dependent Manner. Neural Plast 2020; 2020:8831735. [PMID: 33193754 PMCID: PMC7643369 DOI: 10.1155/2020/8831735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
The spiral ganglion neurons (SGNs) are the primary afferent neurons in the spiral ganglion (SG), while their degeneration or loss would cause sensorineural hearing loss. As a cardiac-derived hormone, atrial natriuretic peptide (ANP) plays a critical role in cardiovascular homeostasis through binding to its functional receptors (NPR-A and NPR-C). ANP and its receptors are widely expressed in the mammalian nervous system where they could be implicated in the regulation of multiple neural functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors in the inner ear, their presence within the cochlear SG and their regulatory roles during auditory neurotransmission and development remain largely unknown. Based on our previous findings, we investigated the expression patterns of ANP and its receptors in the cochlear SG and dissociated SGNs and determined the influence of ANP on neurite outgrowth in vitro by using organotypic SG explants and dissociated SGN cultures from postnatal rats. We have demonstrated that ANP and its receptors are expressed in neurons within the cochlear SG of postnatal rat, while ANP may promote neurite outgrowth of SGNs via the NPR-A/cGMP/PKG pathway in a dose-dependent manner. These results indicate that ANP would play a role in normal neuritogenesis of SGN during cochlear development and represents a potential therapeutic candidate to enhance regeneration and regrowth of SGN neurites.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke Zhou
- Center of Clinical Laboratory Medicine of PLA, Department of Laboratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ke-yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710003, China
| | - Jian-hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ding-jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
4
|
Abdelalim EM, Bellier JP, Tooyama I. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord. Front Neuroanat 2016; 10:116. [PMID: 27994541 PMCID: PMC5133262 DOI: 10.3389/fnana.2016.00116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Brain natriuretic peptide (BNP) exerts its functions through NP receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn (DH) of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and dorsal root ganglion (DRG). BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the DH of the spinal cord and in the neurons of the intermediate column (IC) and ventral horn (VH). Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I–II) labeled with calcitonin gene-related peptide (CGRP), suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase (ChAT) in the motor neurons of the VH. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NP receptor-A (NPR-A) and/or NP receptor-B (NPR-B) at the spinal cord level.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar FoundationDoha, Qatar; Molecular Neuroscience Research Center, Shiga University of Medical ScienceOtsu, Japan; Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal UniversityIsmailia, Egypt
| | - Jean-Pierre Bellier
- Molecular Neuroscience Research Center, Shiga University of Medical Science Otsu, Japan
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science Otsu, Japan
| |
Collapse
|
5
|
Sun F, Zhou K, Wang SJ, Liang PF, Zhu MZ, Qiu JH. Expression patterns of atrial natriuretic peptide and its receptors within the cochlear spiral ganglion of the postnatal rat. Hear Res 2013; 309:103-12. [PMID: 24333928 DOI: 10.1016/j.heares.2013.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 10/31/2013] [Accepted: 11/28/2013] [Indexed: 10/25/2022]
Abstract
The spiral ganglion, which is primarily composed of spiral ganglion neurons and satellite glial cells, transmits auditory information from sensory hair cells to the central nervous system. Atrial natriuretic peptide (ANP), acting through specific receptors, is a regulatory peptide required for a variety of cardiac, neuronal and glial functions. Although previous studies have provided direct evidence for the presence of ANP and its functional receptors (NPR-A and NPR-C) in the inner ear, their presence within the cochlear spiral ganglion and their regulatory roles during auditory neurotransmission and development is not known. Here we investigated the expression patterns and levels of ANP and its receptors within the cochlear spiral ganglion of the postnatal rat using immunofluorescence and immunoelectron microscopy techniques, reverse transcription-polymerase chain reaction and Western blot analysis. We have demonstrated that ANP and its receptors colocalize in both subtypes of spiral ganglion neurons and in perineuronal satellite glial cells. Furthermore, we have analyzed differential expression levels associated with both mRNA and protein of ANP and its receptors within the rat spiral ganglion during postnatal development. Collectively, our research provides direct evidence for the presence and synthesis of ANP and its receptors in both neuronal and non-neuronal cells within the cochlear spiral ganglion, suggesting possible roles for ANP in modulating neuronal and glial functions, as well as neuron-satellite glial cell communication, within the spiral ganglion during auditory neurotransmission and development.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China; Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Ke Zhou
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China; Center of Clinical Laboratory Medicine of PLA, Department of Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Shu-juan Wang
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Peng-fei Liang
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China
| | - Miao-zhang Zhu
- Department of Physiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China.
| | - Jian-hua Qiu
- Department of Otolaryngology/Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province 710032, China.
| |
Collapse
|
6
|
Abdelalim EM, Bellier JP, Tooyama I. Expression of NPR-B in neurons of the dorsal root ganglia of the rat. Peptides 2013; 43:56-61. [PMID: 23454171 DOI: 10.1016/j.peptides.2013.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/16/2013] [Accepted: 02/18/2013] [Indexed: 12/17/2022]
Abstract
C-type natriuretic peptide (CNP) is an abundant neuropeptide in the central nervous system, which exerts its physiological effects through natriuretic peptide receptor B (NPR-B). Recently, the CNP/NPR-B system has been recognized as an important regulator for the development of sensory axons. The dorsal root ganglion (DRG) contains neurons transmitting several kinds of spinal sensory stimuli to the central nervous system. In this study, we characterized NPR-B receptor expression in the rat DRG, using reverse transcription-polymerase chain reaction, Western blotting and immunohistochemistry. Immunostaining revealed that NPR-B was expressed in neuronal cell bodies and processes of the DRG, with NPR-B immunoreactivity mainly prominent in small and medium-sized DRG neurons. Double-immunolabeling showed that NPR-B was expressed in calcitonin gene-related peptide- and isolectin B4-positive neurons. Furthermore, NPR-B expression was co-localized with calcitonin gene-related peptide in the dorsal horn of the spinal cord. Together, our data suggest that the natriuretic peptides may perform several biological actions on sensory neurons via their binding to NPR-B in the DRG.
Collapse
Affiliation(s)
- Essam M Abdelalim
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | | | |
Collapse
|
7
|
Abstract
The presence of opioid receptors has been confirmed by a variety of techniques in vertebrate retinas including those of mammals; however, in most reports, the location of these receptors has been limited to retinal regions rather than specific cell types. Concurrently, our knowledge of the physiological functions of opioid signaling in the retina is based on only a handful of studies. To date, the best-documented opioid effect is the modulation of retinal dopamine release, which has been shown in a variety of vertebrate species. Nonetheless, it is not known if opioids can affect dopaminergic amacrine cells (DACs) directly, via opioid receptors expressed by DACs. This study, using immunohistochemical methods, sought to determine whether (1) μ- and δ-opioid receptors (MORs and DORs, respectively) are present in the mouse retina, and if present, (2) are they expressed by DACs. We found that MOR and DOR immunolabeling were associated with multiple cell types in the inner retina, suggesting that opioids might influence visual information processing at multiple sites within the mammalian retinal circuitry. Specifically, colabeling studies with the DAC molecular marker anti-tyrosine hydroxylase antibody showed that both MOR and DOR immunolabeling localize to DACs. These findings predict that opioids can affect DACs in the mouse retina directly, via MOR and DOR signaling, and might modulate dopamine release as reported in other mammalian and nonmammalian retinas.
Collapse
|
8
|
Xu GZ, Tian J, Zhong YM, Yang XL. Natriuretic peptide receptors are expressed in rat retinal ganglion cells. Brain Res Bull 2010; 82:188-92. [PMID: 20304036 DOI: 10.1016/j.brainresbull.2010.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/04/2010] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
Abstract
Natriuretic peptides (NPs) exert their actions through three membrane-bound receptors, which are known as NP receptors (NPRs: NPR-A, NPR-B and NPR-C). In this work we examined the expression of three NPRs in rat retinal ganglion cells (GCs), retrogradely labeled and intracellularly dye-injected, by double immunofluorescence labeling. In vertical sections, almost all GCs, retrogradely labeled by cholera toxin B, were stained by antibodies against the three NPRs. The labeling for three NPRs was observed mainly on the membranes of the somata of GCs, whereas the staining for NPR-A was also seen in the cytoplasm. Moreover, with tangential sections, almost all cells located in the ganglion cell layer were NPR-A, B, C immunoreactive. By combining with intracellular injection of Neurobiotin into GCs in whole mount retinas that enables to identify ON-, OFF- and ON-OFF-types of GCs according to arborization of their dendrites in the inner plexiform layer, we further demonstrated that NPRs were expressed in these major types of GCs.
Collapse
Affiliation(s)
- Guo-Zhong Xu
- School of Life Science and Technology, Changchun University of Science and Technology, 7989 Weixing Road, Changchun 130022, China
| | | | | | | |
Collapse
|