1
|
Metabolic and behavioural effects in offspring exposed to maternal sucrose consumption: a systematic review and meta-analysis of data from rodent models. J Dev Orig Health Dis 2020; 12:603-618. [PMID: 32907667 DOI: 10.1017/s2040174420000823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Consumption of sugar-sweetened beverages (SSBs) during pregnancy has been associated with childhood obesity. Research in which rodent dams have been given high-fat/high-sugar diets has consistently found metabolic alterations in their offspring. However, what remains unclear is the potential impact on the developing fetus of giving sugar in isolation at concentrations similar to SSBs to the mothers. Therefore, we conducted a systematic review and meta-analysis (Protocol No: 127115 on Prospero) to identify potential relationships between maternal sucrose consumption and metabolic outcomes in offspring of rodent (rat or mouse) models. We analysed studies that provided rodent mothers dams with access to sucrose solutions (8-20% w/v) prior to conception, during pregnancy and/or lactation and that reported offspring outcomes of body weight (BW), body composition and glycaemic control. Following a systematic search of four databases (PubMed, EMBASE, Web of Science and Scopus) performed on 15 January 2019, maternal and offspring data from 15 papers were identified for inclusion. Only rat studies were identified. Meta-analyses were performed on standardised mean differences for maternal and offspring BW and fasting glucose levels, with subgroup analyses of strain, sucrose concentration, exposure period and sex of offspring. A bias towards the inclusion of only data from male offspring was identified and this limited interpretation of potential sexually dimorphic outcomes. Maternal sucrose exposure was associated with an increased risk of obesity and poor glucose disposal in adult and aged offspring.
Collapse
|
2
|
Wu L, Shi A, Zhu D, Bo L, Zhong Y, Wang J, Xu Z, Mao C. High sucrose intake during gestation increases angiotensin II type 1 receptor-mediated vascular contractility associated with epigenetic alterations in aged offspring rats. Peptides 2016; 86:133-144. [PMID: 27818235 DOI: 10.1016/j.peptides.2016.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/10/2016] [Accepted: 11/01/2016] [Indexed: 12/31/2022]
Abstract
Accruing evidence have confirmed that the fetal programming in response to adverse environmental in utero factors plays essential roles in the pathogenesis of hypertension in later life. High sugar intake has been accepted worldwide in everyday life diet and becomes the critical public health issue. Our previous studies indicated that intake of high sucrose (HS) during pregnancy could change the vascular reactivity and dipsogenic behavior closely associated with abnormal renin-angiotensin system (RAS), to increase the risk of hypertension in adult offspring. In the present study, we tested the hypothesis that maternal HS intake in pregnancy may further deteriorate the Ang II-induced cardiovascular responses in the aged offspring. HS intake was provided to pregnant rats throughout the gestation. Blood pressure (BP) in conscious state and vascular contractility in vitro were measured in 22-month-old aged offspring rats. In addition, mRNA and protein expressions and epigenetic changes of Ang II type 1 receptor (AT1R) gene in blood vessels were determined with the methods of real-time RT-PCR, Western blotting, and Chromatin Immunoprecipitation Assay (CHIP). Results showed that, in the aged offspring, maternal HS intake during gestation would cause the elevation of basal BP which could be diminished by losartan. Although the circulatory Ang II was not changed, levels of local Ang II were significantly increased in blood vessels. In addition, prenatal HS exposure would significantly enhance the AT1R-mediated vasoconstrictions in both aorta and mesenteric arteries of the aged offspring. Moreover, in the aged offspring of prenatal HS exposure, mRNA and protein expressions of AT1R gene in both large and small blood vessels were significantly increased, which should be closely associated with the changes of epigenetic mechanisms such as histone modifications. Collectively, we proposed that maternal HS intake during gestation would cause abnormal BP responses mediated via the enhancement of vascular RAS, together with the increased expression of AT1R gene related to the its epigenetic changes, which would actually lead to the overt phenotype of hypertension in the aged offspring.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II/physiology
- Animals
- Aorta/drug effects
- Aorta/physiopathology
- Epigenesis, Genetic/drug effects
- Female
- Fetal Development
- Histones/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiopathology
- Pregnancy
- Prenatal Exposure Delayed Effects/chemically induced
- Prenatal Exposure Delayed Effects/genetics
- Prenatal Exposure Delayed Effects/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Processing, Post-Translational
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/physiology
- Sucrose/toxicity
- TATA-Box Binding Protein/metabolism
- Transcriptome
- Vasoconstriction
Collapse
Affiliation(s)
- Lei Wu
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China; Suzhou Industrial Park Centers for Disease Control and Prevention, Suzhou, China
| | - Aiping Shi
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China; Zhangjiagang Centers for Disease Control and Prevention, Suzhou, China
| | - Di Zhu
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China
| | - Le Bo
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China
| | - Yuan Zhong
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China
| | - Juan Wang
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China
| | - Zhice Xu
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China
| | - Caiping Mao
- Institute for Fetology and Reproductive Medicine Center, First Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
3
|
Reis KP, Heimfarth L, Pierozan P, Ferreira F, Loureiro SO, Fernandes CG, Carvalho RV, Pessoa-Pureur R. High postnatal susceptibility of hippocampal cytoskeleton in response to ethanol exposure during pregnancy and lactation. Alcohol 2015; 49:665-74. [PMID: 26314629 DOI: 10.1016/j.alcohol.2015.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/08/2015] [Accepted: 06/08/2015] [Indexed: 12/30/2022]
Abstract
Ethanol exposure to offspring during pregnancy and lactation leads to developmental disorders, including central nervous system dysfunction. In the present work, we have studied the effect of chronic ethanol exposure during pregnancy and lactation on the phosphorylating system associated with the astrocytic and neuronal intermediate filament (IF) proteins: glial fibrillary acidic protein (GFAP), and neurofilament (NF) subunits of low, medium, and high molecular weight (NFL, NFM, and NFH, respectively) in 9- and 21-day-old pups. Female rats were fed with 20% ethanol in their drinking water during pregnancy and lactation. The homeostasis of the IF phosphorylation was not altered in the cerebral cortex, cerebellum, or hippocampus of 9-day-old pups. However, GFAP, NFL, and NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. PKA had been activated in the hippocampus, and Ser55 in the N-terminal region of NFL was hyperphosphorylated. In addition, JNK/MAPK was activated and KSP repeats in the C-terminal region of NFM were hyperphosphorylated in the hippocampus of 21-day-old pups. Decreased NFH immunocontent but an unaltered total NFH/phosphoNFH ratio suggested altered stoichiometry of NFs in the hippocampus of ethanol-exposed 21-day-old pups. In contrast to the high susceptibility of hippocampal cytoskeleton in developing rats, the homeostasis of the cytoskeleton of ethanol-fed adult females was not altered. Disruption of the cytoskeletal homeostasis in neural cells supports the view that regions of the brain are differentially vulnerable to alcohol insult during pregnancy and lactation, suggesting that modulation of JNK/MAPK and PKA signaling cascades target the hippocampal cytoskeleton in a window of vulnerability in 21-day-old pups. Our findings are relevant, since disruption of the cytoskeleton in immature hippocampus could contribute to later hippocampal damage associated with ethanol toxicity.
Collapse
Affiliation(s)
- Karina Pires Reis
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Luana Heimfarth
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Paula Pierozan
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Fernanda Ferreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | | | | | - Rônan Vivian Carvalho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil
| | - Regina Pessoa-Pureur
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
5
|
Macchione AF, Beas C, Dadam FM, Caeiro XE, Godino A, Ponce LF, Amigone JL, Vivas L. Early free access to hypertonic NaCl solution induces a long-term effect on drinking, brain cell activity and gene expression of adult rat offspring. Neuroscience 2015; 298:120-36. [PMID: 25872186 DOI: 10.1016/j.neuroscience.2015.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/20/2022]
Abstract
Exposure to an altered osmotic environment during a pre/postnatal period can differentially program the fluid intake and excretion pattern profile in a way that persists until adulthood. However, knowledge about the programming effects on the underlying brain neurochemical circuits of thirst and hydroelectrolyte balance, and its relation with behavioral outputs, is limited. We evaluated whether early voluntary intake of hypertonic NaCl solution may program adult offspring fluid balance, plasma vasopressin, neural activity, and brain vasopressin and angiotensinergic receptor type 1a (AT1a)-receptor gene expression. The manipulation (M) period covered dams from 1 week before conception until offspring turned 1-month-old. The experimental groups were (i) Free access to hypertonic NaCl solution (0.45 M NaCl), food (0.18% NaCl) and water [M-Na]; and (ii) Free access to food and water only [M-Ctrol]. Male offspring (2-month-old) were subjected to iv infusion (0.15 ml/min) of hypertonic (1.5M NaCl), isotonic (0.15M NaCl) or sham infusion during 20 min. Cumulative water intake (140 min) and drinking latency to the first lick were recorded from the start of the infusion. Our results indicate that, after systemic sodium overload, the M-Na group had increased water intake, and diminished neuronal activity (Fos-immunoreactivity) in the subfornical organ (SFO) and nucleus of the solitary tract. They also showed reduced relative vasopressin (AVP)-mRNA and AT1a-mRNA expression at the supraoptic nucleus and SFO, respectively. The data indicate that the availability of a rich source of sodium during the pre/postnatal period induces a long-term effect on drinking, neural activity, and brain gene expression implicated in the control of hydroelectrolyte balance.
Collapse
Affiliation(s)
- A F Macchione
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - C Beas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - F M Dadam
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - X E Caeiro
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - A Godino
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - L F Ponce
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - J L Amigone
- Sección de Bioquímica Clínica, Hospital Privado, Córdoba, Argentina
| | - L Vivas
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina; Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
6
|
Mecawi AS, Macchione AF, Nuñez P, Perillan C, Reis LC, Vivas L, Arguelles J. Developmental programing of thirst and sodium appetite. Neurosci Biobehav Rev 2015; 51:1-14. [DOI: 10.1016/j.neubiorev.2014.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 12/05/2014] [Accepted: 12/09/2014] [Indexed: 01/17/2023]
|
7
|
Wu C, Li J, Bo L, Gao Q, Zhu Z, Li D, Li S, Sun M, Mao C, Xu Z. High-sucrose diets in pregnancy alter angiotensin II-mediated pressor response and microvessel tone via the PKC/Cav1.2 pathway in rat offspring. Hypertens Res 2014; 37:818-23. [DOI: 10.1038/hr.2014.94] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/13/2014] [Accepted: 03/18/2014] [Indexed: 11/09/2022]
|
8
|
Intake of high sucrose during pregnancy altered large-conductance Ca2+-activated K+ channels and vessel tone in offspring’s mesenteric arteries. Hypertens Res 2012; 36:158-65. [DOI: 10.1038/hr.2012.146] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Prenatal water deprivation alters brain angiotensin system and dipsogenic changes in the offspring. Brain Res 2011; 1382:128-36. [PMID: 21255559 DOI: 10.1016/j.brainres.2011.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Central renin-angiotensin system (RAS) plays an important role in regulating body fluid balance. The present study determined the effect of maternal dehydration on brain expression levels of angiotensinogen, angiotensin II receptor subtypes, and dipsogenic responses in offspring. METHODS Pregnant rats were deprived of water during late gestation. Expressions of brain angiotensinogen, angiotensin II receptors, and dipsogenic responses were determined. RESULTS Maternal water deprivation significantly decreased fetal body and brain weight, and body and tail length. Fetal plasma sodium, osmolality, and hematocrit were increased. Both AT(1)R and AT(2)R protein abundance was significantly increased in the fetal brain, associating with increased mRNA levels of AT(1a)R and AT(2)R. Additionally, angiotensinogen mRNA was increased. In adult offspring, prenatal dehydration resulted in significant increases in AT(1)R protein and AT(1a)R mRNA, as well as angiotensinogen mRNA in the forebrain in both males and females. In contrast, AT(2)R mRNA and protein were increased only in males. Prenatal dehydration resulted in a significant increase in intracerebroventricular angiotensin II-induced water intake in male, but not female, offspring. CONCLUSION The results provided new information that antenatal water deprivation induces a reprogramming of brain RAS and Ang II receptor expression patterns and alters the central Ang II-mediated dipsogenic response in offspring in a sex-dependent manner.
Collapse
|