1
|
Rahman U, Younas Z, Ahmad I, Yousaf T, Latif R, Rubab U, Hassan H, Shafi U, Mashwani ZUR. Enhancing health and therapeutic potential: innovations in the medicinal and pharmaceutical properties of soy bioactive compounds. Front Pharmacol 2024; 15:1397872. [PMID: 39421675 PMCID: PMC11483366 DOI: 10.3389/fphar.2024.1397872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/24/2024] [Indexed: 10/19/2024] Open
Abstract
An extensive examination of the medical uses of soybean bioactive components is provided by this thorough review. It explores the possible health advantages of isoflavones with phytoestrogenic qualities, like genistein, which may lower the risk of cancer. The review highlights the different roles and possible anticancer activities of phenolic compounds, phytic acid, protease inhibitors, lignans, and saponins, among other bioactive components. It also addresses the benefits of dietary fiber and oligosaccharides derived from soybeans for intestinal health, as well as the impact of soy protein on diabetes, obesity, cancer, and cardiovascular health. Conjugated linoleic acid (CLA) has anticancer and cholesterol-lowering properties; its involvement in promoting metabolic processes is also examined. Pinitol is highlighted in the study as a blood sugar regulator with promise for controlling insulin signaling. In this review, we aim to affirm soybeans' potential as a high-functional, well-being food by examining their recently discovered therapeutic and pharmacological capabilities, rather than to improve upon the previous studies on the reported nutritional advantages of soybeans.
Collapse
Affiliation(s)
| | | | - Ilyas Ahmad
- *Correspondence: Zia-ur-Rehman Mashwani, ; Ilyas Ahmad,
| | | | | | | | | | | | | |
Collapse
|
2
|
Kaufman-Szymczyk A, Kaczmarek W, Fabianowska-Majewska K, Lubecka-Gajewska K. Lunasin and Its Epigenetic Impact in Cancer Chemoprevention. Int J Mol Sci 2023; 24:ijms24119187. [PMID: 37298139 DOI: 10.3390/ijms24119187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer diseases are a leading cause of death worldwide. Therefore, it is pivotal to search for bioactive dietary compounds that can avert tumor development. A diet rich in vegetables, including legumes, provides chemopreventive substances, which have the potential to prevent many diseases, including cancer. Lunasin is a soy-derived peptide whose anti-cancer activity has been studied for over 20 years. The results of the previous research have shown that lunasin inhibits histone acetylation, regulates the cell cycle, suppresses proliferation and induces apoptosis of cancer cells. Thus, lunasin seems to be a promising bioactive anti-cancer agent and a potent epigenetic modulator. The present review discusses studies of the underlying molecular mechanisms and new perspectives on lunasin application in epigenetic prevention and anti-cancer therapy.
Collapse
Affiliation(s)
- Agnieszka Kaufman-Szymczyk
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| | - Wiktoria Kaczmarek
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| | | | - Katarzyna Lubecka-Gajewska
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
3
|
Mazorra-Carrillo JL, De León-Rodríguez A, Huerta-Ocampo JA, Velarde-Salcedo AJ, González de Mejía E, Barba de la Rosa AP. Proteomic analysis of chemically transformed NIH-3T3 cells reveals novel mechanisms of action of amaranth lunasin-like peptide. Food Res Int 2022; 157:111374. [DOI: 10.1016/j.foodres.2022.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/02/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
|
4
|
Swallah MS, Yang X, Li J, Korese JK, Wang S, Fan H, Yu H, Huang Q. The Pros and Cons of Soybean Bioactive Compounds: An Overview. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2062763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Mohammed Sharif Swallah
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| | - Xiaoqing Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Jiaxin Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Joseph Kudadam Korese
- Agricultural Mechanization and Irrigation Technology, Faculty of Agriculture, Food and Consumer Sciences, University for Development StudiesDepartment of, Tamale, Ghana
| | - Sainan Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hongliang Fan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Processing, Soybean Research & Development Centre, Chinese Agricultural Research SystemDivision of Soybean, Changchun, China
| | - Qing Huang
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, China
- Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of SciencesCAS Key, Hefei, China
| |
Collapse
|
5
|
Fernández-Tomé S, Indiano-Romacho P, Mora-Gutiérrez I, Pérez-Rodríguez L, Ortega Moreno L, Marin AC, Baldán-Martín M, Moreno-Monteagudo JA, Santander C, Chaparro M, Hernández-Ledesma B, Gisbert JP, Bernardo D. Lunasin Peptide is a Modulator of the Immune Response in the Human Gastrointestinal Tract. Mol Nutr Food Res 2021; 65:e2001034. [PMID: 33890400 DOI: 10.1002/mnfr.202001034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/11/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Lunasin is a soybean bioactive peptide with a variety of beneficial properties against chronic disorders. However, its effect in human primary intestinal cells remains unknown. Hence, this study aims to characterize its ex vivo biological activity in the human intestinal mucosa. METHODS AND RESULTS Human intestinal biopsies, obtained from healthy controls, are ex vivo conditioned with lunasin both in the presence/absence of lipopolysaccharide (LPS). Peptide maintains its stability during biopsy culture by HPLC-MS/MS analysis. Lunasin is bioactive in the human mucosa, as it induces IL-1β, TNF-α, IL-17A, CCL2, and PGE2/COX-2 gene expression together with an increased expression of tolerogenic IL-10 and TGFβ, while it also downregulates the expression of iNOS and subunit p65 from NF-κB. Indeed, lunasin also abrogates the LPS-induced pro-inflammatory response, downregulating IL-17A, IFNγ, and IL-8 expression, and inducing IL-10 and TGFβ expression. These results are also mirrored in the cell-free culture supernatants at the protein level by Multiplex. Moreover, lunasin further induces a regulatory phenotype and function on human intestinal conventional dendritic cell and macrophage subsets as assessed by flow cytometry. CONCLUSIONS We hereby have characterized lunasin as an immunomodulatory peptide with potential capacity to prevent immune and inflammatory-mediated disorders in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Samuel Fernández-Tomé
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Pedro Indiano-Romacho
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Irene Mora-Gutiérrez
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Leticia Pérez-Rodríguez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Lorena Ortega Moreno
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia C Marin
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Montserrat Baldán-Martín
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - José Andrés Moreno-Monteagudo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Cecilio Santander
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Chaparro
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Bernardo
- Servicio de Aparato Digestivo. Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain.,Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
6
|
Fernández-Tomé S, Hernández-Ledesma B, Chaparro M, Indiano-Romacho P, Bernardo D, Gisbert JP. Role of food proteins and bioactive peptides in inflammatory bowel disease. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
7
|
Juritsch AF, Moreau R. Role of soybean-derived bioactive compounds in inflammatory bowel disease. Nutr Rev 2018; 76:618-638. [PMID: 29800381 DOI: 10.1093/nutrit/nuy021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, inflammatory condition of the gastrointestinal tract. Patients with IBD present with debilitating symptoms that alter the quality of life and can develop into severe complications requiring surgery. Epidemiological evidence indicates Westernized societies have an elevated IBD burden when compared with Asian societies. Considering the stark contrast between the typical Western and Eastern dietary patterns, it is postulated that differences in food and lifestyle contribute to lower IBD incidence in Asian countries. Soybeans (Glycine max), which are consumed in high quantities and as various preparations in Eastern societies, contain a wealth of natural, biologically active compounds that include isoflavones, bioactive peptides, protease inhibitors, and phytosterols, among many others. These compounds have been shown to improve human health, and preclinical evidence suggests they have potential to improve the prognosis of IBD. This review summarizes the current state of evidence regarding the effects and the mechanisms of action of these soybean-derived bioactive compounds in experimental models of IBD.
Collapse
Affiliation(s)
- Anthony F Juritsch
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Régis Moreau
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Hsieh CC, Martínez-Villaluenga C, de Lumen BO, Hernández-Ledesma B. Updating the research on the chemopreventive and therapeutic role of the peptide lunasin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2070-2079. [PMID: 28990666 DOI: 10.1002/jsfa.8719] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/21/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Chronic diseases have become the medical challenge of the 21st century because of their high incidence and mortality rates. Modulation of diet and lifestyle habits is considered as the best strategy for the prevention of these disorders. Health promoting benefits beyond their nutritional effects have been described for multiple dietary compounds. Among these compounds, the peptide lunasin is considered as one of the most promising. Naturally present in soybean, lunasin has been extensively studied in the last two decades because of its potential against chronic diseases such as cancer, cardiovascular and immunological disorders. The purpose of this article is to summarise the evidence on the presence of lunasin in soybean and derived foods, and its bioavailability once it is orally ingested. The protective and therapeutic effects of this peptide against cancer, oxidative stress, inflammation, and high cholesterol levels as well as the molecular mechanisms of action involved in these effects are also described in this review. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chia-Chien Hsieh
- Department of Human Development and Family Studies (Nutritional Science & Education), National Taiwan Normal University, Taipei, Taiwan
| | | | - Ben O de Lumen
- Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Blanca Hernández-Ledesma
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM, CEI UAM+CSIC), Madrid, Spain
| |
Collapse
|
9
|
Lule VK, Garg S, Pophaly SD, Hitesh, Tomar SK. "Potential health benefits of lunasin: a multifaceted soy-derived bioactive peptide". J Food Sci 2015; 80:R485-94. [PMID: 25627564 DOI: 10.1111/1750-3841.12786] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023]
Abstract
Bioactive peptides are small protein fragments derived from enzymatic hydrolysis of food proteins, fermentation with proteolytic starter cultures, and gastrointestinal digestion. These peptides have positive impacts on a number of physiological functions in living beings. Lunasin, a soy-derived bioactive peptide, is one of the most promising among them. Lunasin encoded within 2S albumin (GM2S-1) gene, identified as a novel peptide extracted from soybean seed. It is composed of 43 amino acid residues with a molecular weight of 5.5 kDa. Extensive scientific studies have shown that lunasin possesses inherent antioxidative, anti-inflammatory, anticancerous properties and could also play a vital role in regulating of cholesterol biosynthesis in the body. Its high bioavailability and heat stable nature allow its potential use as dietary supplement. The present review summarizes some of the potential health and therapeutic benefits of lunasin reported hitherto.
Collapse
|
10
|
Lunasin sensitivity in non-small cell lung cancer cells is linked to suppression of integrin signaling and changes in histone acetylation. Int J Mol Sci 2014; 15:23705-24. [PMID: 25530619 PMCID: PMC4284788 DOI: 10.3390/ijms151223705] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 01/04/2023] Open
Abstract
Lunasin is a plant derived bioactive peptide with both cancer chemopreventive and therapeutic activity. We recently showed lunasin inhibits non-small cell lung cancer (NSCLC) cell proliferation in a cell-line-specific manner. We now compared the effects of lunasin treatment of lunasin-sensitive (H661) and lunasin-insensitive (H1299) NSCLC cells with respect to lunasin uptake, histone acetylation and integrin signaling. Both cell lines exhibited changes in histone acetylation, with H661 cells showing a unique increase in H4K16 acetylation. Proximity ligation assays demonstrated lunasin interacted with integrins containing αv, α5, β1 and β3 subunits to a larger extent in the H661 compared to H1299 cells. Moreover, lunasin specifically disrupted the interaction of β1 and β3 subunits with the downstream signaling components phosphorylated Focal Adhesion Kinase (pFAK), Kindlin and Intergrin Linked Kinase in H661 cells. Immunoblot analyses demonstrated lunasin treatment of H661 resulted in reduced levels of pFAK, phosphorylated Akt and phosphorylated ERK1/2 whereas no changes were observed in H1299 cells. Silencing of αv expression in H661 cells confirmed signaling through integrins containing αv is essential for proliferation. Moreover, lunasin was unable to further inhibit proliferation in αv-silenced H661 cells. This indicates antagonism of integrin signaling via αv-containing integrins is an important component of lunasin’s mechanism of action.
Collapse
|
11
|
Schloßmacher U, Schröder HC, Wang X, Feng Q, Diehl-Seifert B, Neumann S, Trautwein A, Müller WEG. Alginate/silica composite hydrogel as a potential morphogenetically active scaffold for three-dimensional tissue engineering. RSC Adv 2013. [DOI: 10.1039/c3ra23341c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Yu H, Venkatesha SH, Moudgil KD. Microarray-based gene expression profiling reveals the mediators and pathways involved in the anti-arthritic activity of Celastrus-derived Celastrol. Int Immunopharmacol 2012; 13:499-506. [PMID: 22664142 PMCID: PMC3389174 DOI: 10.1016/j.intimp.2012.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 01/14/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints. The prolonged use of non-steroidal anti-inflammatory drugs and other newer drugs is associated with severe adverse reactions. Therefore, there is a need for newer anti-arthritic agents. Celastrol, a bioactive component of the Chinese herb Celastrus, possesses anti-arthritic activity as tested in the adjuvant arthritis (AA) model of rheumatoid arthritis (RA). However, the mechanism of action of Celastrol has not been fully defined. We reasoned that microarray analysis of the lymphoid cells of Celastrol-treated arthritic animals might provide vital clues in this regard. We isolated total RNA of the draining lymph node cells (LNCs) of Celastrol-treated (Tc) and vehicle-treated (Tp) arthritic Lewis rats that were restimulated in vitro with the disease-related antigen, mycobacterial heat-shock protein 65 (Bhsp65), and tested it using microarray gene chips. Also tested was RNA from LNCs of control arthritic rats just before any treatment (T₀). Seventy six genes involved in various biological functions were differentially regulated by Bhsp65 in LNCs of Tp group, and 19 genes among them were shared by the Tc group. Furthermore, a group of 14 genes was unique to Tc. When Tc and Tp were compared, many of the Bhsp65-induced genes were related to the immune cells, cellular proliferation and inflammatory responses. Our results revealed 10 differentially expressed genes and 14 pathways that constituted the "Celastrol Signature". Our results would help identify novel targets for RA therapy.
Collapse
Affiliation(s)
- Hua Yu
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shivaprasad H. Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kamal D. Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Medicine, Division of Rheumatology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
13
|
Seber LE, Barnett BW, McConnell EJ, Hume SD, Cai J, Boles K, Davis KR. Scalable purification and characterization of the anticancer lunasin peptide from soybean. PLoS One 2012; 7:e35409. [PMID: 22514740 PMCID: PMC3326064 DOI: 10.1371/journal.pone.0035409] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/15/2012] [Indexed: 11/18/2022] Open
Abstract
Lunasin is a peptide derived from the soybean 2S albumin seed protein that has both anticancer and anti-inflammatory activities. Large-scale animal studies and human clinical trials to determine the efficacy of lunasin in vivo have been hampered by the cost of synthetic lunasin and the lack of a method for obtaining gram quantities of highly purified lunasin from plant sources. The goal of this study was to develop a large-scale method to generate highly purified lunasin from defatted soy flour. A scalable method was developed that utilizes the sequential application of anion-exchange chromatography, ultrafiltration, and reversed-phase chromatography. This method generates lunasin preparations of >99% purity with a yield of 442 mg/kg defatted soy flour. Mass spectrometry of the purified lunasin revealed that the peptide is 44 amino acids in length and represents the original published sequence of lunasin with an additional C-terminal asparagine residue. Histone-binding assays demonstrated that the biological activity of the purified lunasin was similar to that of synthetic lunasin. This study provides a robust method for purifying commercial-scale quantities of biologically-active lunasin and clearly identifies the predominant form of lunasin in soy flour. This method will greatly facilitate the development of lunasin as a potential nutraceutical or therapeutic anticancer agent.
Collapse
Affiliation(s)
- Lauren E. Seber
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Brian W. Barnett
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | | | - Steven D. Hume
- Kentucky BioProcessing, LLC, Owensboro, Kentucky, United States of America
| | - Jian Cai
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - Kati Boles
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
| | - Keith R. Davis
- James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky, United States of America
- Owensboro Cancer Research Program, Owensboro, Kentucky, United States of America
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|