1
|
Mulla JA, Tamhane VA. Novel insights into plant defensin ingestion induced metabolic responses in the polyphagous insect pest Helicoverpa armigera. Sci Rep 2023; 13:3151. [PMID: 36823197 PMCID: PMC9950371 DOI: 10.1038/s41598-023-29250-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Lepidopteran insect pest Helicoverpa armigera is one of the most destructive pests of crop plants and several biotechnological approaches are being developed for its control. Plant defensins are small cationic and cysteine-rich peptides that play a role in plant defense. Ingestion of a defensin from Capsicum annuum (CanDef-20) induced a dose-dependent reduction in larval and pupal mass, delayed metamorphosis and also severely reduced fecundity and fertility in H. armigera. To understand the molecular mechanisms of CanDef-20 ingestion-mediated antibiosis in H. armigera larvae, a comparative transcriptomics analysis was carried out. Predominant downregulation of GOs represents serine-type endopeptidases, structural constituents of ribosomes and integral membrane components and differential upregulation of ATP binding, nucleus and translation, while up-regulation of nucleic acid binding represented by transposable elements, were detected. Different isoforms of lipase, serine endopeptidase, glutathione S-transferase, cadherin, alkaline phosphatase and aminopeptidases were found to be upregulated as a compensatory response to CanDef-20 ingestion. In vitro enzyme assays and qPCR analysis of some representative genes associated with vital cellular processes like metamorphosis, food digestion and gut membrane indicated adaptive differential regulations in CanDef-20 fed H. armigera larvae. We conclude that CanDef-20 ingestion affects insect metabolism in a number of ways through its interaction with cell membrane, enzymes, cytoplasmic proteins and triggering transposon mobilization which are linked to growth retardation and adaptive strategies in H. armigera.
Collapse
Affiliation(s)
- Javed A. Mulla
- grid.32056.320000 0001 2190 9326Department of Biotechnology (Jointly Merged With Institute of Bioinformatics and Biotechnology (IBB)), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| | - Vaijayanti A. Tamhane
- grid.32056.320000 0001 2190 9326Department of Biotechnology (Jointly Merged With Institute of Bioinformatics and Biotechnology (IBB)), Savitribai Phule Pune University, Pune, Maharashtra 411007 India
| |
Collapse
|
2
|
Bukhteeva I, Hrunyk NI, Yusypovych YM, Shalovylo YI, Kovaleva V, Nesmelova IV. Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestris. Structure 2022; 30:753-762.e5. [PMID: 35334207 DOI: 10.1016/j.str.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
Abstract
Plant defensins demonstrate high structural stability at extreme temperatures and pH values and, in general, are non-toxic to mammalian cells. These properties make them attractive candidates for use in biotechnology and biomedicine. Knowing the structure-function relationship is desirable to guide the design of plant defensin-based applications. Thus far, the broad range of biological activities was described only for one defensin from gymnosperms, the defensin PsDef1 from Scots pine. Here, we report that closely related defensin from the same taxonomy group, PsDef2, differing from PsDef1 by six amino acids, also possesses antimicrobial, antibacterial, and insect α-amylase inhibitory activities. We also report the solution structure and dynamics properties of PsDef2 assessed using a combination of experimental nuclear magnetic resonance (NMR) techniques. Lastly, we perform a comparative analysis of PsDef2 and PsDef1 gaining a molecular-level insight into their structure-dynamics-function relationship.
Collapse
Affiliation(s)
- Irina Bukhteeva
- Department of Physics and Optical Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Natalia I Hrunyk
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Yuri M Yusypovych
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Yulia I Shalovylo
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Valentina Kovaleva
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Irina V Nesmelova
- Department of Physics and Optical Science, University of North Carolina, Charlotte, NC 28223, USA.
| |
Collapse
|
3
|
Liu Y, Hua YP, Chen H, Zhou T, Yue CP, Huang JY. Genome-scale identification of plant defensin ( PDF) family genes and molecular characterization of their responses to diverse nutrient stresses in allotetraploid rapeseed. PeerJ 2021; 9:e12007. [PMID: 34603847 PMCID: PMC8445089 DOI: 10.7717/peerj.12007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/27/2021] [Indexed: 11/22/2022] Open
Abstract
Plant defensins (PDFs), short peptides with strong antibacterial activity, play important roles in plant growth, development, and stress resistance. However, there are few systematic analyses on PDFs in Brassica napus. Here, bioinformatics methods were used to identify genome-wide PDFs in Brassica napus, and systematically analyze physicochemical properties, expansion pattern, phylogeny, and expression profiling of BnaPDFs under diverse nutrient stresses. A total of 37 full-length PDF homologs, divided into two subgroups (PDF1s and PDF2s), were identified in the rapeseed genome. A total of two distinct clades were identified in the BnaPDF phylogeny. Clade specific conserved motifs were identified within each clade respectively. Most BnaPDFs were proved to undergo powerful purified selection. The PDF members had enriched cis-elements related to growth and development, hormone response, environmental stress response in their promoter regions. GO annotations indicate that the functional pathways of BnaPDFs are mainly involved in cells killing and plant defense responses. In addition, bna-miRNA164 and bna-miRNA172 respectively regulate the expression of their targets BnaA2.PDF2.5 and BnaC7.PDF2.6. The expression patterns of BnaPDFs were analyzed in different tissues. BnaPDF1.2bs was mainly expressed in the roots, whereas BnaPDF2.2s and BnaPDF2.3s were both expressed in stamen, pericarp, silique, and stem. However, the other BnaPDF members showed low expression levels in various tissues. Differential expression of BnaPDFs under nitrate limitation, ammonium excess, phosphorus starvation, potassium deficiency, cadmium toxicity, and salt stress indicated that they might participate in different nutrient stress resistance. The genome-wide identification and characterization of BnaPDFs will enrich understanding of their molecular characteristics and provide elite gene resources for genetic improvement of rapeseed resistance to nutrient stresses.
Collapse
Affiliation(s)
- Ying Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Peng Hua
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Huan Chen
- National Tobacco Quality Supervision and Inspection Center, Zhengzhou, China
| | - Ting Zhou
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Cai-Peng Yue
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Jin-Yong Huang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Zhang P, Qin D, Chen J, Zhang Z. Plants in the Genus Tephrosia: Valuable Resources for Botanical Insecticides. INSECTS 2020; 11:insects11100721. [PMID: 33096762 PMCID: PMC7589259 DOI: 10.3390/insects11100721] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary There is an increasing interest in botanical insecticides worldwide. Plants from the genus Tephrosia are rich in bioactive phytochemicals, particularly rotenoids which include rotenone, deguelin, rotenolone, and tephrosin. Rotenoids have strong insecticidal activities against a wider range of pests. However, there has been no treatise thus far focusing on Tephrosia as insecticidal plants. This article is intended to review phytochemicals produced by selected species, their insecticidal activities, and the current status on the use of Tephrosia as botanical insecticidal plants for insect pest control. Abstract Synthetic insecticides are effective in controlling insect pests but can also harm nontarget organisms and the environment. During the last 40 years, there has been an increasing interest in alternative insecticides, particularly those derived from plants, commonly known as botanical insecticides. However, commercially available botanical insecticides remain limited. Rotenone is one of the earliest identified compounds and was used as fish poison and pest management. Due to its link with Parkinson disease, the use of rotenone was banned in many developed countries. Rotenone used to be isolated from Derris spp. and Lonchocarpus spp., and it can also be isolated from Tephrosia species. In this article, we present basic botanical information on selected Tephrosia species and their major compounds related to insecticidal activities and highlight the current use of extracts derived from some species, Tephrosia vogelii in particular, for control of insect pests in stored grains and crop production. The crude extracts contain multiple bioactive compounds, mainly rotenone, deguelin, rotenolone, and tephrosin, which act in either additive or synergistic fashion, resulting in effective control of insect pests. There are about 400 species in the genus Tephrosia, and species and even strains or variants vary greatly in these active compounds. We argue that a systematic evaluation of bioactive compounds in different species are needed, and species or strains with high insecticidal activities should be selected for use in the sustainable control of insect pests.
Collapse
Affiliation(s)
- Peiwen Zhang
- A Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (P.Z.); (D.Q.)
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Deqiang Qin
- A Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (P.Z.); (D.Q.)
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
- Correspondence: (J.C.); (Z.Z.)
| | - Zhixiang Zhang
- A Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (P.Z.); (D.Q.)
- Correspondence: (J.C.); (Z.Z.)
| |
Collapse
|
5
|
Plant Defensins from a Structural Perspective. Int J Mol Sci 2020; 21:ijms21155307. [PMID: 32722628 PMCID: PMC7432377 DOI: 10.3390/ijms21155307] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Plant defensins form a family of proteins with a broad spectrum of protective activities against fungi, bacteria, and insects. Furthermore, some plant defensins have revealed anticancer activity. In general, plant defensins are non-toxic to plant and mammalian cells, and interest in using them for biotechnological and medicinal purposes is growing. Recent studies provided significant insights into the mechanisms of action of plant defensins. In this review, we focus on structural and dynamics aspects and discuss structure-dynamics-function relations of plant defensins.
Collapse
|
6
|
Odintsova TI, Slezina MP, Istomina EA. Defensins of Grasses: A Systematic Review. Biomolecules 2020; 10:E1029. [PMID: 32664422 PMCID: PMC7407236 DOI: 10.3390/biom10071029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
The grass family (Poaceae) is one of the largest families of flowering plants, growing in all climatic zones of all continents, which includes species of exceptional economic importance. The high adaptability of grasses to adverse environmental factors implies the existence of efficient resistance mechanisms that involve the production of antimicrobial peptides (AMPs). Of plant AMPs, defensins represent one of the largest and best-studied families. Although wheat and barley seed γ-thionins were the first defensins isolated from plants, the functional characterization of grass defensins is still in its infancy. In this review, we summarize the current knowledge of the characterized defensins from cultivated and selected wild-growing grasses. For each species, isolation of defensins or production by heterologous expression, peptide structure, biological activity, and structure-function relationship are described, along with the gene expression data. We also provide our results on in silico mining of defensin-like sequences in the genomes of all described grass species and discuss their potential functions. The data presented will form the basis for elucidation of the mode of action of grass defensins and high adaptability of grasses to environmental stress and will provide novel potent molecules for practical use in medicine and agriculture.
Collapse
|
7
|
Parisi K, Shafee TMA, Quimbar P, van der Weerden NL, Bleackley MR, Anderson MA. The evolution, function and mechanisms of action for plant defensins. Semin Cell Dev Biol 2018; 88:107-118. [PMID: 29432955 DOI: 10.1016/j.semcdb.2018.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/18/2017] [Accepted: 02/06/2018] [Indexed: 12/20/2022]
Abstract
Plant defensins are an extensive family of small cysteine rich proteins characterised by a conserved cysteine stabilised alpha beta protein fold which resembles the structure of insect and vertebrate defensins. However, secondary structure and disulphide topology indicates two independent superfamilies of defensins with similar structures that have arisen via an extreme case of convergent evolution. Defensins from plants and insects belong to the cis-defensin superfamily whereas mammalian defensins belong to the trans-defensin superfamily. Plant defensins are produced by all species of plants and although the structure is highly conserved, the amino acid sequences are highly variable with the exception of the cysteine residues that form the stabilising disulphide bonds and a few other conserved residues. The majority of plant defensins are components of the plant innate immune system but others have evolved additional functions ranging from roles in sexual reproduction and development to metal tolerance. This review focuses on the antifungal mechanisms of plant defensins. The activity of plant defensins is not limited to plant pathogens and many of the described mechanisms have been elucidated using yeast models. These mechanisms are more complex than simple membrane permeabilisation induced by many small antimicrobial peptides. Common themes that run through the characterised mechanisms are interactions with specific lipids, production of reactive oxygen species and induction of cell wall stress. Links between sequence motifs and functions are highlighted where appropriate. The complexity of the interactions between plant defensins and fungi helps explain why this protein superfamily is ubiquitous in plant innate immunity.
Collapse
Affiliation(s)
- Kathy Parisi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Thomas M A Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Pedro Quimbar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Mark R Bleackley
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia
| | - Marilyn A Anderson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Bundoora, Victoria, Australia.
| |
Collapse
|
8
|
Bhide AJ, Channale SM, Yadav Y, Bhattacharjee K, Pawar PK, Maheshwari VL, Gupta VS, Ramasamy S, Giri AP. Genomic and functional characterization of coleopteran insect-specific α-amylase inhibitor gene from Amaranthus species. PLANT MOLECULAR BIOLOGY 2017; 94:319-332. [PMID: 28405784 DOI: 10.1007/s11103-017-0609-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
The smallest 32 amino acid α-amylase inhibitor from Amaranthus hypochondriacus (AAI) is reported. The complete gene of pre-protein (AhAI) encoding a 26 amino acid (aa) signal peptide followed by the 43 aa region and the previously identified 32 aa peptide was cloned successfully. Three cysteine residues and one disulfide bond conserved within known α-amylase inhibitors were present in AhAI. Identical genomic and open reading frame was found to be present in close relatives of A. hypochondriacus namely Amaranthus paniculatus, Achyranthes aspera and Celosia argentea. Interestingly, the 3'UTR of AhAI varied in these species. The highest expression of AhAI was observed in A. hypochondriacus inflorescence; however, it was not detected in the seed. We hypothesized that the inhibitor expressed in leaves and inflorescence might be transported to the seeds. Sub-cellular localization studies clearly indicated the involvement of AhAI signal peptide in extracellular secretion. Full length rAhAI showed differential inhibition against α-amylases from human, insects, fungi and bacteria. Particularly, α-amylases from Helicoverpa armigera (Lepidoptera) were not inhibited by AhAI while Tribolium castaneum and Callosobruchus chinensis (Coleoptera) α-amylases were completely inhibited. Molecular docking of AhAI revealed tighter interactions with active site residues of T. castaneum α-amylase compared to C. chinensis α-amylase, which could be the rationale behind the disparity in their IC50. Normal growth, development and adult emergence of C. chinensis were hampered after feeding on rAhAI. Altogether, the ability of AhAI to affect the growth of C. chinensis demonstrated its potential as an efficient bio-control agent, especially against stored grain pests.
Collapse
Affiliation(s)
- Amey J Bhide
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sonal M Channale
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Yashpal Yadav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Kabita Bhattacharjee
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Pankaj K Pawar
- Department of Biochemistry, Shivaji University, Kolhapur, 416 004, India
| | - V L Maheshwari
- School of Life Sciences, North Maharashtra University, Jalgaon, 425 001, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sureshkumar Ramasamy
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India.
| |
Collapse
|
9
|
Purification and characterization of peptides from Capsicum annuum fruits which are α-amylase inhibitors and exhibit high antimicrobial activity against fungi of agronomic importance. Protein Expr Purif 2017; 132:97-107. [DOI: 10.1016/j.pep.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/24/2016] [Accepted: 01/31/2017] [Indexed: 01/10/2023]
|
10
|
Miyakawa T, Hatano KI, Miyauchi Y, Suwa YI, Sawano Y, Tanokura M. A secreted protein with plant-specific cysteine-rich motif functions as a mannose-binding lectin that exhibits antifungal activity. PLANT PHYSIOLOGY 2014; 166:766-78. [PMID: 25139159 PMCID: PMC4213107 DOI: 10.1104/pp.114.242636] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 08/14/2014] [Indexed: 05/19/2023]
Abstract
Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family.
Collapse
Affiliation(s)
- Takuya Miyakawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Ken-ichi Hatano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Yumiko Miyauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - You-ichi Suwa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Yoriko Sawano
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan (T.M., Y.M., Y.Su., M.T.);Division of Molecular Science, Faculty of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan (K.H.); andLaboratory of Chemistry, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Ichikawa-shi, Chiba 272-0827, Japan (Y.Sa.)
| |
Collapse
|
11
|
Vieira Bard GC, Nascimento VV, Oliveira AEA, Rodrigues R, Da Cunha M, Dias GB, Vasconcelos IM, Carvalho AO, Gomes VM. Vicilin-like peptides fromCapsicum baccatumL. seeds are α-amylase inhibitors and exhibit antifungal activity against important yeasts in medical mycology. Biopolymers 2014; 102:335-43. [DOI: 10.1002/bip.22504] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/16/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Gabriela C. Vieira Bard
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| | - Viviane V. Nascimento
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| | - Antônia Elenir A. Oliveira
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| | - Rosana Rodrigues
- Centro de Ciências e Tecnologias Agropecuárias; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| | - Maura Da Cunha
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| | - Germana B. Dias
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| | - Ilka M. Vasconcelos
- Universidade Federal do Ceará; Departamento de Bioquímica e Biologia Molecular; Laboratório de Toxinas Vegetais; Fortaleza Brazil
| | - Andre O. Carvalho
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| | - Valdirene M. Gomes
- Centro de Biociências e Biotecnologia; Universidade Estadual do Norte Fluminense; Campos dos Goytacazes; 28015-602 RJ Brazil
| |
Collapse
|