1
|
Liu Z, Lei X, Li J, Zhong Y, Tan D, Zhang Q, Kong Z. Effects of fermented Andrographis paniculata on growth performance, carcass traits, immune function, and intestinal health in Muscovy ducks. Poult Sci 2022; 102:102461. [PMID: 36709554 PMCID: PMC9900618 DOI: 10.1016/j.psj.2022.102461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/15/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
The study aimed to examine the effects of unfermented and fermented Andrographis paniculata on growth performance, carcass traits, immune function, and intestinal health in Muscovy ducks. A total of 450 (16-day-old) Muscovy ducks weighing 271.44 ± 8.25 g were randomly assigned to 5 dietary treatments (6 replicate pens of 15 ducks per treatment), consisting of one control treatment (basal diet without A. paniculata), one unfermented A. paniculata treatment (basal diet plus 30 g/kg unfermented A. paniculata) and 3 fermented A. paniculata treatments (basal diet plus 10, 30, and 50 g/kg). 30 g/kg unfermented A. paniculata increased the ADG, thymus index, peripheral blood lymphocyte conversion rate, villi height, intestinal thickness, villi surface area, intraepithelial lymphocytes rate, while decreased the FCR. 10 g/kg fermented A. paniculata markedly boosted ADG, bursa of fabricius index, thymus index, serum lysozyme, lymphocyte conversion rate, villi height, vilii width, intestinal thickness, villi surface area, while decreased the FCR. 30 g/kg fermented A. paniculata clearly improved ADG, bursa of fabricius index, thymus index, serum lysozyme, lymphocyte conversion rate, villi height, vilii width, intestinal thickness, villi surface area, intraepithelial lymphocytes, while decreased FCR. 50 g/kg fermented A. paniculata significantly increased villi height, vilii width, and villi surface area, while clearly reduced BW. Additionally, compared to 30 g/kg unfermented A. paniculata, 30 g/kg fermented A. paniculata obviously increased bursa of fabricius indices, lymphocyte conversion rate, vilii width, villi surface area. On top of that, supplementation with unfermented and fermented A. paniculata (30 g/kg each) decreased the relative abundance of harmful bacteria (Succinivibrio, Succinatimonas, Sphaerochaeta, and Mucispirillum) and increase the abundance of beneficial bacteria (Rikenellaceae, Methanocorpusculum, Fournierella, Ruminococcaceae) in the ceca of the ducks. However, fermented A. paniculata had considerable better effects than unfermented A. paniculate on all above measured indices. Overall, these results revealed that supplementation with unfermented and fermented A. paniculata across different treatments improved growth, immune status, intestinal morphology, and intestinal microbiota composition and structure in Muscovy ducks, making it a potential alternative to antibiotics in poultry production.
Collapse
Affiliation(s)
| | - Xiaowen Lei
- Ganzhou Animal Husbandry and Fisheries Research Institute, Gannan Academy of Sciences, Ganzhou, 341000, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
2
|
Khan AI, Rehman AU, Farooqui NA, Siddiqui NZ, Ayub Q, Ramzan MN, Zexu W, Zhang X, Yu Y, Xin Y, Wang L. Shrimp peptide hydrolysate modulates the immune response in cyclophosphamide immunosuppressed mice model. J Food Biochem 2022; 46:e14251. [PMID: 35633198 DOI: 10.1111/jfbc.14251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 12/18/2022]
Abstract
Bioactive peptides are naturally found in various foods and were shown to have various distinct physiological as well as medicinal benefits. In this study shrimp peptide hydrolysate (SPH) was prepared to investigate its immunomodulatory effect against cyclophosphamide (CTX) induced immunosuppressed mice. The SPH effect was also analyzed on murine macrophage (RAW264.7 cells). The findings show that SPH stimulates macrophages to form multiple pseudopodia, has no cytotoxic effect, and increases phagocytic activity in RAW264.7 cells. Furthermore, the immunosuppressed in-vivo model illustrates the improvement in various aspects, that is body weight, escalation in immune organ index, and ameliorates histopathological transformation of thymus along with the spleen. SPH enhances cell-mediated immunity by facilitating splenocyte proliferation and inhibit excessive apoptosis. Moreover, the significant outcome had been observed with the upregulation of cytokines interferon-gamma (IFN-ϒ), interleukin-2 (IL-2) level and simultaneously downregulate certain genes include interleukin-4 (IL-4) and interleukin-10 (IL-10). Additionally, SPH expedites cellular immunity by enhancing the regulation of immunoglobulin A (IgA) and immunoglobulin M (IgM). However, these findings support the hypothesis that SPH is an effective immunomodulatory agent capable of preventing immune system hypofunction. It is necessary to investigate the detailed mechanism to rule out any unforeseen effects of SPH in future research. PRACTICAL APPLICATIONS: Chemotherapy medications, despite their dominating detrimental effects of damaging immunological organs such as the spleen and thymus, extend the treatment process as well as the destruction of the self-immune system. This study found that SPH is an effective immunomodulatory agent capable of avoiding immune organ hypofunction and improving cell mediate immunity by enhancing macrophage activation, phagocytosis, spleenocyte proliferation, suppressing apoptosis, and elevating cytokines and antibodies. As a result, SPH can be utilized as a nutritional and functional dietary supplement to boost immunological modulation in combination with chemotherapy medications in order to lessen their adverse effects.
Collapse
Affiliation(s)
- Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Qamar Ayub
- College of Clinical Laboratory Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Wang Zexu
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Xiaoxiao Zhang
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Yingshuo Yu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, People's Republic of China
| | - Liang Wang
- National Joint Engineering Laboratory, Regenerative Medicine Center, Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
3
|
Khan AI, Rehman AU, Farooqui NA, Siddiqui NZ, Ayub Q, Ramzan MN, Wang L, Xin Y. Effects of Shrimp Peptide Hydrolysate on Intestinal Microbiota Restoration and Immune Modulation in Cyclophosphamide-Treated Mice. Molecules 2022; 27:molecules27051720. [PMID: 35268821 PMCID: PMC8911659 DOI: 10.3390/molecules27051720] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/26/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is important in regulating host metabolism, maintaining physiology, and protecting immune homeostasis. Gut microbiota dysbiosis affects the development of the gut microenvironment, as well as the onset of various external systemic diseases and metabolic syndromes. Cyclophosphamide (CTX) is a commonly used chemotherapeutic drug that suppresses the host immune system, intestinal mucosa inflammation, and dysbiosis of the intestinal flora. Immunomodulators are necessary to enhance the immune system and prevent homeostasis disbalance and cytotoxicity caused by CTX. In this study, shrimp peptide hydrolysate (SPH) was evaluated for immunomodulation, intestinal integration, and microbiota in CTX-induced immunosuppressed mice. It was observed that SPH would significantly restore goblet cells and intestinal mucosa integrity, modulate the immune system, and increase relative expression of mRNA and tight-junction associated proteins (Occludin, Zo-1, Claudin-1, and Mucin-2). It also improved gut flora and restored the intestinal microbiota ecological balance by removing harmful microbes of various taxonomic groups. This would also increase the immune organs index, serum levels of cytokines (IFN-ϒ, IL1β, TNF-α, IL-6), and immunoglobin levels (IgA, IgM). The Firmicutes/Bacteroidetes proportion was decreased in CTX-induced mice. Finally, SPH would be recommended as a functional food source with a modulatory effect not only on intestinal microbiota, but also as a potential health-promoting immune function regulator.
Collapse
Affiliation(s)
- Asif Iqbal Khan
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Ata Ur Rehman
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Nabeel Ahmed Farooqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Nimra Zafar Siddiqui
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
| | - Qamar Ayub
- College of Clinical Laboratory Sciences, Dalian Medical University, Dalian 116044, China;
| | - Muhammad Noman Ramzan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China;
| | - Liang Wang
- Stem Cell Clinical Research Center, National Joint Engineering Laboratory, Regenerative Medicine Center, The First Affiliated Hospital of Dalian Medical University, No. 193, Lianhe Road, Shahekou District, Dalian 116011, China
- Correspondence: (L.W.); (Y.X.); Tel.: +86-411-83635963-2169 (L.W.); +86-411-86110295 (Y.X.)
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, China; (A.I.K.); (A.U.R.); (N.A.F.); (N.Z.S.)
- Correspondence: (L.W.); (Y.X.); Tel.: +86-411-83635963-2169 (L.W.); +86-411-86110295 (Y.X.)
| |
Collapse
|
4
|
Li Z, Zhang J, Wang T, Zhang J, Zhang L, Wang T. Effects of Capsaicin on Growth Performance, Meat Quality, Digestive Enzyme Activities, Intestinal Morphology, and Organ Indexes of Broilers. Front Vet Sci 2022; 9:841231. [PMID: 35265697 PMCID: PMC8899211 DOI: 10.3389/fvets.2022.841231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
This experiment was conducted to investigate the effects of capsaicin (CAP) on growth performance, meat quality, digestive enzyme activities, intestinal morphology, and organ indexes of broilers. A total of 256 one-day-old Arbor Acre male broilers were randomly allocated into four treatments with eight replicates of eight birds, feeding a basal diet (control group), a basal diet supplemented with 2, 4, and 6 mg/kg CAP for 42 d, respectively. The growth performance, digestive enzyme activities of intestinal contents, small intestinal morphology, and organ indexes were measured at 21 and 42 d. The meat quality traits of breast muscles were determined at 42 d. The results showed dietary 4 mg/kg CAP supplementation decreased (P < 0.05) the feed to gain ratio (F/G) in the grower phase (22–42 d) and overall (1–42 d) compared with the control group, and 2 mg/kg CAP group also decreased (P < 0.05) the F/G from 1 to 42 d. Dietary 4 mg/kg CAP supplementation decreased (P < 0.05) the drip loss at 48 h and the pH24h of breast muscles relative to the control group. Some digestive enzymes activities of jejunal and ileal contents were increased in the 2 and 4 mg/kg CAP groups compared with the control group both at 21 and 42 d. In addition, dietary 2 mg/kg CAP supplementation increased (P < 0.05) the relative weight of liver, jejunal villus height, villus width, and villous surface area at 21 d; The length of the jejunum segment and the relative weight of Bursa of Fabricius at 42 d in the 4 mg/kg CAP group were higher (P < 0.05) than the control group. In conclusion, dietary 2 or 4 mg/kg CAP supplementation decreased the F/G, improved meat quality, enhanced digestive enzyme activities, improved the jejunal development, and increased the relative liver and Bursa of Fabricius weight in broilers.
Collapse
|
5
|
Du Y, Chen Z, Yan P, Zhang C, Duan X, Chen X, Liu M, Kang L, Yang X, Fan Y, Zhang J, Wang R. Arginine-Arginine-Leucine Peptide Targeting Heat Shock Protein 70 for Cancer Imaging. Mol Pharm 2021; 18:3750-3762. [PMID: 34491767 DOI: 10.1021/acs.molpharmaceut.1c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Arg-Arg-Leu (RRL) is a potent tumor-homing tripeptide. However, the binding target is unclear. In this study, we intended to identify the binding target of RRL and evaluate the tumor targeting of 99mTc-MAG3-RRL in vivo. Biotin-RRL, 5-TAMRA-RRL, and 99mTc-MAG3-RRL were designed to trace the binding target and tumor lesion. Immunoprecipitation-mass spectrometry was conducted to identify the candidate proteins and determination of the subcellular localization was also performed. A pull-down assay was performed to demonstrate the immunoprecipitate. Fluorescence colocalization and cell uptake assays were performed to elucidate the correlation between the selected binding protein and RRL, and the internalization mechanism of RRL. Biodistribution and in vivo imaging were performed to evaluate the tumor accumulation and targeting of 99mTc-MAG3-RRL. The target for RRL was screened to be heat shock protein 70 (HSP70). The prominent uptake distribution of RRL was concentrated in the membrane and cytoplasm. A pull-down assay demonstrated the existence of HSP70 in the biotin-RRL captured complex. Regarding fluorescence colocalization and cell uptake assays, RRL may interact with HSP70 at the nucleotide-binding domain (NBD). Clathrin-dependent endocytosis and macropinocytosis could be a vital internalization mechanism of RRL. In vivo imaging and biodistribution both demonstrated that 99mTc-MAG3-RRL can trace tumors with satisfactory accumulation in hepatoma xenograft mice. The radioactive signals accumulated in tumor lesions can be blocked by VER-155008, which can bind to the NBD of HSP70. Our findings revealed that RRL may interact with HSP70 and that 99mTc-MAG3-RRL could be a prospective probe for visualizing overexpressed HSP70 tumor sections.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Zhao Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xueqi Chen
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Meng Liu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing 102206, China
| |
Collapse
|
6
|
Liu Y, Shen T, Zhou J, Chen L, Shi S, Wang X, Zhang M, Wang C, Liao C. Bursal peptide BP-IV as a novel immunoadjuvant enhances the protective efficacy of an epitope peptide vaccine containing T and B cell epitopes of the H9N2 avian influenza virus. Microb Pathog 2021; 158:105095. [PMID: 34280501 DOI: 10.1016/j.micpath.2021.105095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/15/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Abstract
Short peptide antigens covering conserved T or B cell epitopes have been investigated in influenza vaccines. Bursal pentapeptide V (BPP-V) and bursal peptide IV (BP-IV) are small molecular peptides that were isolated and identified from the bursa of Fabricius (BF) and induce a strong immune response at both the humoural and cellular levels. To explore the molecular adjuvant potential of BPP-V and BP-IV with an epitope vaccine, an epitope peptide (HA284-298, GNCVVQCQTERGGLN) rich in T and B cell epitopes for the H9N2 avian influenza virus (AIV) haemagglutinin (HA) protein was selected. BPP-V and BP-IV were coupled with the epitope peptide sequence to form BPP-V and BP-IV-epitope vaccines, respectively. The immunoefficacy of BPP-V and BP-IV-epitope peptide vaccines was evaluated. The results showed that the epitope peptide had weak immunogenicity. The BPP-V-epitope peptide vaccine promoted only the secretion of anti-HA IgG and IgG1 antibodies. The BP-IV-epitope peptide vaccine not only promoted the production of anti-HA IgG and IgG1 antibodies but also significantly induced the production of the IgG2a antibody. The BP-IV-epitope peptide vaccine significantly promoted the production of interleukin (IL-4) and interferon-γ (IFN-γ) (the BPP-V epitope peptide vaccine promoted only the production of IL-4), enhanced the cytotoxic T lymphocyte (CTL) response, and increased the proportion of CD3+ T lymphocytes. Moreover, the BP-IV-epitope peptide vaccine promoted a cell-mediated immune response similar to that of the AIV vaccine group. Furthermore, BPP-V and BP-IV-epitope peptide vaccines could also accelerate the clearance of pulmonary virus and reduce pathological damage after the challenge with H9N2 AIV. This study demonstrates the potential of BP-IV as an effective adjuvant for the epitope peptide vaccine for the H9N2 AIV.
Collapse
Affiliation(s)
- Yongqing Liu
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Tengfei Shen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jiangfei Zhou
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Liangliang Chen
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shuaibing Shi
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiaoli Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, Henan, China
| | - Min Zhang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China
| | - Chen Wang
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| | - Chengshui Liao
- The Key Lab of Veterinary Biological Products, Henan University of Science and Technology, Luoyang, Henan, China.
| |
Collapse
|
7
|
Hao SS, Zong MM, Zhang Z, Cai JX, Zheng Y, Feng XL, Wang C. The Inducing Roles of the New Isolated Bursal Hexapeptide and Pentapeptide on the Immune Response of AIV Vaccine in Mice. Protein Pept Lett 2019; 26:542-549. [PMID: 30950342 DOI: 10.2174/0929866526666190405123932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Bursa of Fabricius is the acknowledged central humoral immune organ. The bursal-derived peptides play the important roles on the immature B cell development and antibody production. OBJECTIVES Here we explored the functions of the new isolated bursal hexapeptide and pentapeptide on the humoral, cellular immune response and antigen presentation to Avian Influenza Virus (AIV) vaccine in mice immunization. METHODS The bursa extract samples were purified following RP HPLC method, and were analyzed with MS/MS to identify the amino acid sequences. Mice were twice subcutaneously injected with AIV inactivated vaccine plus with two new isolated bursal peptides at three dosages, respectively. On two weeks after the second immunization, sera samples were collected from the immunized mice to measure AIV-specific IgG antibody levels and HI antibody titers. Also, on 7th day after the second immunization, lymphocytes were isolated from the immunized mice to detect T cell subtype and lymphocyte viabilities, and the expressions of co-stimulatory molecule on dendritic cells in the immunized mice. RESULTS Two new bursal hexapeptide and pentapeptide with amino acid sequences KGNRVY and MPPTH were isolated, respectively. Our investigation proved the strong regulatory roles of bursal hexapeptide on AIV-specific IgG levels and HI antibody titers, and lymphocyte viabilities, and the significant increased T cells subpopulation and expressions of MHCII molecule on dendritic cells in the immunized mice. Moreover, our findings verified the significantly enhanced AIV-specific IgG antibody and HI titers, and the strong increased T cell subpopulation and expressions of CD40 molecule on dendritic cells in the mice immunized with AIV vaccine and bursal pentapeptide. CONCLUSION We isolated and identified two new hexapeptide and pentapeptide from bursa, and proved that these two bursal peptides effectively induced the AIV-specific antibody, T cell and antigen presentation immune responses, which provided an experimental basis for the further clinical application of the bursal derived active peptide on the vaccine improvement.
Collapse
Affiliation(s)
- Shan Shan Hao
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Man Man Zong
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Zhang
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia Xi Cai
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Zheng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiu Li Feng
- Key Laboratory of Animal Microbiology of China's Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.,MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Wang
- College of Animal Science & Technologe, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
8
|
Zhang C, Zhou J, Liu Z, Liu Y, Cai K, Shen T, Liao C, Wang C. Comparison of immunoadjuvant activities of four bursal peptides combined with H9N2 avian influenza virus vaccine. J Vet Sci 2019; 19:817-826. [PMID: 30173497 PMCID: PMC6265577 DOI: 10.4142/jvs.2018.19.6.817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/22/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
The bursa of Fabricius (BF) is a central humoral immune organ unique to birds. Four bursal peptides (BP-I, BP-II, BP-III, and BP-IV) have been isolated and identified from the BF. In this study, the immunoadjuvant activities of BPs I to IV were examined in mice immunized with H9N2 avian influenza virus (AIV) vaccine. The results suggested that BP-I effectively enhanced cell-mediated immune responses, increased the secretion of Th1 (interferon gamma)- and Th2 (interleukin-4)-type cytokines, and induced an improved cytotoxic T-lymphocyte (CTL) response to the H9N2 virus. BP-II mainly elevated specific antibody production, especially neutralizing antibodies, and increased Th1- and Th2-type cytokine secretion. BP-III had no significant effect on antibody production or cell-mediated immune responses compared to those in the control group. A strong immune response at both the humoral and cellular levels was induced by BP-IV. Furthermore, a virus challenge experiment followed by H&E staining revealed that BP-I and BP-II promoted removal of the virus and conferred protection in mouse lungs. BP-IV significantly reduced viral titers and histopathological changes and contributed to protection against H9N2 AIV challenge in mouse lungs. This study further elucidated the immunoadjuvant activities of BPs I to IV, providing a novel insight into immunoadjuvants for use in vaccine design.
Collapse
Affiliation(s)
- Cong Zhang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiangfei Zhou
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhixin Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yongqing Liu
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Kairui Cai
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Tengfei Shen
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chengshui Liao
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chen Wang
- Key Laboratory of Veterinary Biological Engineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
9
|
The Functions and Mechanism of a New Oligopeptide BP9 from Avian Bursa on Antibody Responses, Immature B Cell, and Autophagy. J Immunol Res 2019; 2019:1574383. [PMID: 30723747 PMCID: PMC6339771 DOI: 10.1155/2019/1574383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 01/07/2023] Open
Abstract
The bursa of Fabricius is an acknowledged central humoral immune organ unique to birds, which is vital to B cell differentiation and antibody production. However, the function and mechanism of the biological active peptide isolated from bursa on B cell development and autophagy were less reported. In this study, we isolated a new oligopeptide with nine amino acids Leu-Met-Thr-Phe-Arg-Asn-Glu-Gly-Thr from avian bursa following RP-HPLC, MODIL-TOP-MS, and MS/MS, which was named after BP9. The results of immunization experiments showed that mice injected with 0.01 and 0.05 mg/mL BP9 plus JEV vaccine generated the significant increased antibody levels, compared to those injected with JEV vaccine only. The microarray analysis on the molecular basis of BP9-treated immature B cell showed that vast genes were involved in various immune-related biological processes in BP9-treated WEHI-231 cells, among which the regulation of cytokine production and T cell activation were both major immune-related processes in WEHI-231 cells with BP9 treatment following network analysis. Also, the differentially regulated genes were found to be involved in four significantly enriched pathways in BP9-treated WEHI-231 cells. Finally, we proved that BP9 induced the autophagy formation, regulated the gene and protein expressions related to autophagy in immature B cell, and stimulated AMPK-ULK1 phosphorylation expression. These results suggested that BP9 might be a strong bursal-derived active peptide on antibody response, B cell differentiation, and autophagy in immature B cells, which provided the linking among humoral immunity, B cell differentiation, and autophagy and offered the important reference for the effective immunotherapeutic strategies and immune improvement.
Collapse
|
10
|
Feng XL, Zheng Y, Zong MM, Hao SS, Zhou GF, Cao RB, Chen PY, Liu TQ. The immunomodulatory functions and molecular mechanism of a new bursal heptapeptide (BP7) in immune responses and immature B cells. Vet Res 2019; 50:64. [PMID: 31533803 PMCID: PMC6749628 DOI: 10.1186/s13567-019-0682-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/27/2019] [Indexed: 01/07/2023] Open
Abstract
The bursa of Fabricius (BF) is the acknowledged central humoural immune organ unique to birds and plays a vital role in B lymphocyte development. In addition, the unique molecular immune features of bursal-derived biological peptides involved in B cell development are rarely reported. In this paper, a novel bursal heptapeptide (BP7) with the sequence GGCDGAA was isolated from the BF and was shown to enhance the monoclonal antibody production of a hybridoma. A mouse immunization experiment showed that mice immunized with an AIV antigen and BP7 produced strong antibody responses and cell-mediated immune responses. Additionally, BP7 stimulated increased mRNA levels of sIgM in immature mouse WEHI-231 B cells. Gene microarray results confirmed that BP7 regulated 2465 differentially expressed genes in BP7-treated WEHI-231 cells and induced 13 signalling pathways and various immune-related functional processes. Furthermore, we found that BP7 stimulated WEHI-231 cell autophagy and AMPK-ULK1 phosphorylation and regulated Bcl-2 protein expression. Finally, chicken immunization showed that BP7 enhanced the potential antibody and cytokine responses to the AIV antigen. These results suggested that BP7 might be an active biological factor that functions as a potential immunopotentiator, which provided some novel insights into the molecular mechanisms of the effects of bursal peptides on immune functions and B cell differentiation.
Collapse
Affiliation(s)
- Xiu Li Feng
- 0000 0000 9750 7019grid.27871.3bKey Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,0000 0000 9750 7019grid.27871.3bMOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yang Zheng
- 0000 0000 9750 7019grid.27871.3bKey Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,0000 0000 9750 7019grid.27871.3bMOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Man Man Zong
- 0000 0000 9750 7019grid.27871.3bKey Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,0000 0000 9750 7019grid.27871.3bMOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shan Shan Hao
- 0000 0000 9750 7019grid.27871.3bKey Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,0000 0000 9750 7019grid.27871.3bMOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Guang Fang Zhou
- 0000 0000 9750 7019grid.27871.3bKey Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,0000 0000 9750 7019grid.27871.3bMOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Rui Bing Cao
- 0000 0000 9750 7019grid.27871.3bKey Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,0000 0000 9750 7019grid.27871.3bMOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pu Yan Chen
- 0000 0000 9750 7019grid.27871.3bKey Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China ,0000 0000 9750 7019grid.27871.3bMOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095 China
| | - Tao Qing Liu
- 0000 0001 0017 5204grid.454840.9Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China
| |
Collapse
|
11
|
Avila S, Muñoz-García L, Vázquez-Leyva S, Salinas-Jazmín N, Medina-Rivero E, Pavón L, Mellado-Sánchez G, Chacón-Salinas R, Estrada-Parra S, Vallejo-Castillo L, Pérez-Tapia SM. Transferon™, a peptide mixture with immunomodulatory properties is not immunogenic when administered with various adjuvants. J Immunotoxicol 2018; 14:169-177. [PMID: 28707490 DOI: 10.1080/1547691x.2017.1346009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transferon, a human dialyzable leukocyte extract (hDLE), is a biotherapeutic that comprises a complex mixture of low-molecular-weight peptides (< 10 kDa) and is used to treat diseases with an inflammatory component. Some biotherapeutics, including those composed of peptides, can induce anti-drug antibodies (ADA) that block or diminish their therapeutic effect. Nevertheless, few studies have evaluated peptide-derived drug immunogenicity. In this study, the immunogenicity of Transferon was examined in a murine model during an immunization scheme using the following adjuvants: Al(OH)3, incomplete Freund's adjuvant (IFA), or Titermax Gold. The inoculation scheme entailed three routes of administration (intraperitoneal, Day 1; subcutaneous, Day 7; and intramuscular, Day 14) using 200 μg Transferon/inoculation. Serum samples were collected on Day 21. Total IgG levels were quantitated by affinity chromatography, and specific antibodies against components of Transferon were analyzed by dot-blot and ELISA. Ovalbumin (OVA, 44 kDa) and peptides from hydrolyzed collagen (PFHC, < 17 kDa) were used as positive and negative controls, respectively, in the same inoculation scheme and analyses for Transferon. OVA, PFHC, and Transferon increased total IgG concentrations in mice. However, only IgG antibodies against OVA were detected. Based on the results, it is concluded that Transferon does not induce generation of specific antibodies against its components in this model, regardless of adjuvant and route of administration. These results support the safety of Transferon by confirming its inability to induce ADA in this animal model.
Collapse
Affiliation(s)
- Sandra Avila
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico
| | - Leslie Muñoz-García
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico
| | - Said Vázquez-Leyva
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico
| | - Nohemí Salinas-Jazmín
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico
| | - Emilio Medina-Rivero
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico
| | - Lenin Pavón
- b Laboratorio de Psicoinmunología , Instituto Nacional de Psiquiatría Ramón de la Fuente , Mexico City , Mexico
| | - Gabriela Mellado-Sánchez
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico
| | - Rommel Chacón-Salinas
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico.,c Departamento de Inmunología , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN , Mexico City , Mexico
| | - Sergio Estrada-Parra
- c Departamento de Inmunología , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN , Mexico City , Mexico
| | - Luis Vallejo-Castillo
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico.,d Departamento de Farmacología , Centro de Investigación y de Estudios Avanzados del IPN (Cinvestav-IPN) , Mexico City , Mexico
| | - Sonia Mayra Pérez-Tapia
- a Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Instituto Politécnico Nacional , Mexico City , Mexico.,c Departamento de Inmunología , Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN , Mexico City , Mexico.,e Unidad de Investigación, Desarrollo e Innovación Médica y Biotecnológica (UDIMEB) , Instituto Politécnico Nacional , Mexico City , Mexico
| |
Collapse
|
12
|
Qiao M, Tu M, Wang Z, Mao F, Chen H, Qin L, Du M. Identification and Antithrombotic Activity of Peptides from Blue Mussel (Mytilus edulis) Protein. Int J Mol Sci 2018; 19:E138. [PMID: 29300301 PMCID: PMC5796087 DOI: 10.3390/ijms19010138] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022] Open
Abstract
The blue mussel (Mytilus edulis) reportedly contains many bioactive components of nutritional value. Water-, salt- and acid-soluble M. edulis protein fractions were obtained and the proteins were trypsinized. The resultant peptides were analyzed by ultra-performance liquid chromatography quadrupole time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). 387 unique peptides were identified that matched 81 precursor proteins. Molecular mass distributions of the proteins and peptides were analyzed by sodium dodecyl sulfate-polyacryl amide gel electrophoresis (SDS-PAGE). The differences between the three protein samples were studied by Venn diagram of peptide and protein compositions. Toxicity, allergic and antithrombotic activity of peptides was predicted using database website and molecular docking respectively. The antithrombotic activity of enzymatic hydrolysate from water-, salt- and acid-soluble M. edulis protein were 40.17%, 85.74%, 82.00% at 5 mg/mL, respectively. Active mechanism of antithrombotic peptide (ELEDSLDSER) was also research about amino acid binding sites and interaction, simultaneously.
Collapse
Affiliation(s)
- Meiling Qiao
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Maolin Tu
- Department of Food Science and Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Zhenyu Wang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Fengjiao Mao
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Hui Chen
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Lei Qin
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian 116034, China.
| |
Collapse
|
13
|
Hajfathalian M, Ghelichi S, García-Moreno PJ, Moltke Sørensen AD, Jacobsen C. Peptides: Production, bioactivity, functionality, and applications. Crit Rev Food Sci Nutr 2017; 58:3097-3129. [PMID: 29020461 DOI: 10.1080/10408398.2017.1352564] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Production of peptides with various effects from proteins of different sources continues to receive academic attention. Researchers of different disciplines are putting increasing efforts to produce bioactive and functional peptides from different sources such as plants, animals, and food industry by-products. The aim of this review is to introduce production methods of hydrolysates and peptides and provide a comprehensive overview of their bioactivity in terms of their effects on immune, cardiovascular, nervous, and gastrointestinal systems. Moreover, functional and antioxidant properties of hydrolysates and isolated peptides are reviewed. Finally, industrial and commercial applications of bioactive peptides including their use in nutrition and production of pharmaceuticals and nutraceuticals are discussed.
Collapse
Affiliation(s)
- Mona Hajfathalian
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Sakhi Ghelichi
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark.,b Department of Seafood Science and Technology, Faculty of Fisheries and Environmental Science , Gorgan University of Agricultural Sciences and Natural Resources , Gorgan , Iran
| | - Pedro J García-Moreno
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Ann-Dorit Moltke Sørensen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| | - Charlotte Jacobsen
- a Division of Food Technology, National Food Institute , Technical University of Denmark , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
14
|
Physicochemical Characteristics of Transferon™ Batches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7935181. [PMID: 27525277 PMCID: PMC4971316 DOI: 10.1155/2016/7935181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 12/02/2022]
Abstract
Transferon, a biotherapeutic agent that has been used for the past 2 decades for diseases with an inflammatory component, has been approved by regulatory authorities in Mexico (COFEPRIS) for the treatment of patients with herpes infection. The active pharmaceutical ingredient (API) of Transferon is based on polydispersion of peptides that have been extracted from lysed human leukocytes by a dialysis process and a subsequent ultrafiltration step to select molecules below 10 kDa. To physicochemically characterize the drug product, we developed chromatographic methods and an SDS-PAGE approach to analyze the composition and the overall variability of Transferon. Reversed-phase chromatographic profiles of peptide populations demonstrated batch-to-batch consistency from 10 representative batches that harbored 4 primary peaks with a relative standard deviation (RSD) of less than 7%. Aminogram profiles exhibited 17 proteinogenic amino acids and showed that glycine was the most abundant amino acid, with a relative content of approximately 18%. Further, based on their electrophoretic migration, the peptide populations exhibited a molecular mass of about 10 kDa. Finally, we determined the Transferon fingerprint using a mass spectrometry tool. Because each batch was produced from independent pooled buffy coat samples from healthy donors, supplied by a local blood bank, our results support the consistency of the production of Transferon and reveal its peptide identity with regard to its physicochemical attributes.
Collapse
|