1
|
Hauserman MR, Sullivan LE, James KL, Ferraro MJ, Rice KC. Response of Staphylococcus aureus physiology and Agr quorum sensing to low-shear modeled microgravity. J Bacteriol 2024; 206:e0027224. [PMID: 39120147 PMCID: PMC11411946 DOI: 10.1128/jb.00272-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Staphylococcus aureus is commonly isolated from astronauts returning from spaceflight. Previous analysis of omics data from S. aureus low Earth orbit cultures indicated significantly increased expression of the Agr quorum sensing system and its downstream targets in spaceflight samples compared to ground controls. In this current study, the rotary cell culture system (RCCS) was used to investigate the effect of low-shear modeled microgravity (LSMMG) on S. aureus physiology and Agr activity. When cultured in the same growth medium and temperature as the previous spaceflight experiment, S. aureus LSMMG cultures exhibited decreased agr expression and altered growth compared to normal gravity control cultures, which are typically oriented with oxygenation membrane on the bottom of the high aspect rotating vessel (HARV). When S. aureus was grown in an inverted gravity control orientation (oxygenation membrane on top of the HARV), reduced Agr activity was observed relative to both traditional control and LSMMG cultures, signifying that oxygen availability may affect the observed differences in Agr activity. Metabolite assays revealed increased lactate and decreased acetate excretion in both LSMMG and inverted control cultures. Secretomics analysis of LSMMG, control, and inverted control HARV culture supernatants corroborated these results, with inverted and LSMMG cultures exhibiting a decreased abundance of Agr-regulated virulence factors and an increased abundance of proteins expressed in low-oxygen conditions. Collectively, these studies suggest that the orientation of the HARV oxygenation membrane can affect S. aureus physiology and Agr quorum sensing in the RCCS, a variable that should be considered when interpreting data using this ground-based microgravity model.IMPORTANCES. aureus is commonly isolated from astronauts returning from spaceflight and from surfaces within human-inhabited closed environments such as spacecraft. Astronaut health and immune function are significantly altered in spaceflight. Therefore, elucidating the effects of microgravity on S. aureus physiology is critical for assessing its pathogenic potential during long-term human space habitation. These results also highlight the necessity of eliminating potential confounding factors when comparing simulated microgravity model data with actual spaceflight experiments.
Collapse
Affiliation(s)
- Matthew R Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Leia E Sullivan
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kimberly L James
- Department of Biological Sciences, Florida Gulf Coast University, Fort Myers, Florida, USA
| | - Mariola J Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Bang J, Park J, Lee SH, Jang J, Hwang J, Kamarov O, Park HJ, Lee SJ, Seo MD, Won HS, Seok SH, Kim JH. Nontraditional Roles of Magnesium Ions in Modulating Sav2152: Insight from a Haloacid Dehalogenase-like Superfamily Phosphatase from Staphylococcus aureus. Int J Mol Sci 2024; 25:5021. [PMID: 38732240 PMCID: PMC11084212 DOI: 10.3390/ijms25095021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.
Collapse
Affiliation(s)
- Jaeseok Bang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jaehui Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Sung-Hee Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Jinhwa Jang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Junwoo Hwang
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Otabek Kamarov
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Hae-Joon Park
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Soo-Jae Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| | - Min-Duk Seo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea;
- College of Pharmacy, Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Republic of Korea
| | - Hyung-Sik Won
- Department of Biotechnology, Research Institute (RIBHS), College of Biomedical and Health Science, Konkuk University, Chungju 27478, Republic of Korea;
- BK21 Project Team, Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Republic of Korea
| | - Seung-Hyeon Seok
- College of Pharmacy, Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 632433, Republic of Korea
| | - Ji-Hun Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea; (J.B.); (J.P.); (S.-H.L.); (J.J.); (J.H.); (O.K.); (H.-J.P.); (S.-J.L.)
| |
Collapse
|
3
|
Noli Truant S, Redolfi DM, Sarratea MB, Malchiodi EL, Fernández MM. Superantigens, a Paradox of the Immune Response. Toxins (Basel) 2022; 14:toxins14110800. [PMID: 36422975 PMCID: PMC9692936 DOI: 10.3390/toxins14110800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 11/19/2022] Open
Abstract
Staphylococcal enterotoxins are a wide family of bacterial exotoxins with the capacity to activate as much as 20% of the host T cells, which is why they were called superantigens. Superantigens (SAgs) can cause multiple diseases in humans and cattle, ranging from mild to life-threatening infections. Almost all S. aureus isolates encode at least one of these toxins, though there is no complete knowledge about how their production is triggered. One of the main problems with the available evidence for these toxins is that most studies have been conducted with a few superantigens; however, the resulting characteristics are attributed to the whole group. Although these toxins share homology and a two-domain structure organization, the similarity ratio varies from 20 to 89% among different SAgs, implying wide heterogeneity. Furthermore, every attempt to structurally classify these proteins has failed to answer differential biological functionalities. Taking these concerns into account, it might not be appropriate to extrapolate all the information that is currently available to every staphylococcal SAg. Here, we aimed to gather the available information about all staphylococcal SAgs, considering their functions and pathogenicity, their ability to interact with the immune system as well as their capacity to be used as immunotherapeutic agents, resembling the two faces of Dr. Jekyll and Mr. Hyde.
Collapse
|
4
|
Multiplex Detection of 24 Staphylococcal Enterotoxins in Culture Supernatant Using Liquid Chromatography Coupled to High-Resolution Mass Spectrometry. Toxins (Basel) 2022; 14:toxins14040249. [PMID: 35448858 PMCID: PMC9031063 DOI: 10.3390/toxins14040249] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Staphylococcal food poisoning outbreaks are caused by the ingestion of food contaminated with staphylococcal enterotoxins (SEs). Among the 27 SEs described in the literature to date, only a few can be detected using immuno-enzymatic-based methods that are strongly dependent on the availability of antibodies. Liquid chromatography, coupled to high-resolution mass spectrometry (LC-HRMS), has, therefore, been put forward as a relevant complementary method, but only for the detection of a limited number of enterotoxins. In this work, LC-HRMS was developed for the detection and quantification of 24 SEs. A database of 93 specific signature peptides and LC-HRMS parameters was optimized using sequences from 24 SEs, including their 162 variants. A label-free quantification protocol was established to overcome the absence of calibration standards. The LC-HRMS method showed high performance in terms of specificity, sensitivity, and accuracy when applied to 49 enterotoxin-producing strains. SE concentrations measured depended on both SE type and the coagulase-positive staphylococci (CPS) strain. This study indicates that LC-MS is a relevant alternative and complementary tool to ELISA methods. The advantages of LC-MS clearly lie in both the multiplex analysis of a large number of SEs, and the automated analysis of a high number of samples.
Collapse
|
5
|
Kandil A, Hanora A, Azab M, Enany S. Proteomic analysis of bacterial communities associated with atopic dermatitis. J Proteomics 2020; 229:103944. [DOI: 10.1016/j.jprot.2020.103944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 12/24/2022]
|
6
|
Progresses on bacterial secretomes enlighten research on Mycoplasma secretome. Microb Pathog 2020; 144:104160. [PMID: 32194181 DOI: 10.1016/j.micpath.2020.104160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 11/20/2022]
Abstract
Bacterial secretome is a comprehensive catalog of bacterial proteins that are released or secreted outside the cells. They offer a number of factors that possess several significant roles in virulence as well as cell to cell communication and hence play a core role in bacterial pathogenesis. Sometimes these proteins are bounded with membranes giving them the shape of vesicles called extracellular vesicles (EVs) or outer membrane vesicles (OMVs). Bacteria secrete these proteins via Sec and Tat pathways into the periplasm. Secreted proteins have found to be important as diagnostic markers as well as antigenic factors for the development of an effective candidate vaccine. Recently, the research in the field of secretomics is growing up and getting more interesting due to their direct involvement in the pathogenesis of the microorganisms leading to the infection. Many pathogenic bacteria have been studied for their secretome and the results illustrated novel antigens. This review highlights the secretome studies of different pathogenic bacteria in humans and animals, general secretion mechanisms, different approaches and challenges in the secretome of Mycoplasma sp.
Collapse
|
7
|
Zubair M, Muhamed SA, Khan FA, Zhao G, Menghwar H, Faisal M, Zhang H, Zhu X, Rasheed MA, Chen Y, Marawan MA, Chen H, Guo A. Identification of 60 secreted proteins for Mycoplasma bovis with secretome assay. Microb Pathog 2020; 143:104135. [PMID: 32165330 DOI: 10.1016/j.micpath.2020.104135] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/28/2023]
Abstract
Mycoplasma bovis is a risky pathogen mainly responsible for pneumonia and mastitis in cattle. Up to date, its pathogenesis is not clear. Since secreted proteins have a tricky role in M. bovis pathogenesis, this study was designed to systematically reveal M. bovis secretome and potential role in virulence of the pathogen. By using bioinformatics tools, a total of 246 secreted proteins were predicted based on M. bovis genome. Among them, 14 were classical, 154 non-classical and 78 both pathways. Then by using 2-dimensional gel electrophoresis (2-DE) and Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF- MS), 169 proteins were revealed. Of them, 60 were predicted to be secreted including 3 classical, 43 non-classical, and 14 both classical and non-classical. Further 8 proteins (MbovP0038, MbovP0338, MbovP0341, MbovP0520, MbovP0581, MbovP0674, MbovP0693, MbovP0845) were predicted to be virulence-related factors with VFDB. In addition, MbovP0581 (ABC transporter protein) was validated experimentally as secreted in nature and highly immunogenic reacting with sera of cattle experimentally infected with M. bovis. In conclusion, this study might be a crucial step towards a better understanding of pathogenesis and leading to the development of novel diagnostic marker and potent vaccine against M. bovis.
Collapse
Affiliation(s)
- Muhammad Zubair
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shafii Abdullahi Muhamed
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Farhan Anwar Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; The University of Agriculture, Peshawar, Department of Animal Health, Khyber Pakhtunkhwa, 25120, Pakistan
| | - Gang Zhao
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Harish Menghwar
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Faisal
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Zhang
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xifang Zhu
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Asif Rasheed
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Department of Biosciences, COMSATS Institute of Information Technology, Sahiwal, Pakistan
| | - Yingyu Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Marawan A Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Infectious Diseases, Animal Medicine Department, Faculty of Veterinary Medicine, Benha University, Qualyobia, Egypt
| | - Huanchun Chen
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; Key Laboratory of Development of Veterinary Diagnostic Products, China Ministry of Agriculture, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
8
|
Möller J, Kraner ME, Burkovski A. More than a Toxin: Protein Inventory of Clostridium tetani Toxoid Vaccines. Proteomes 2019; 7:proteomes7020015. [PMID: 30988272 PMCID: PMC6631180 DOI: 10.3390/proteomes7020015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 01/15/2023] Open
Abstract
Clostridium tetani is the etiological agent of tetanus, a life-threatening bacterial infection. The most efficient protection strategy against tetanus is a vaccination with the C. tetani neurotoxin, which is inactivated by formaldehyde-crosslinking. Since we assumed that besides the tetanus toxin, other proteins of C. tetani may also be present in toxoid preparations, we analyzed commercially available vaccines from different countries in respect to their protein content using mass spectrometry. In total 991 proteins could be identified in all five analyzed vaccines, 206 proteins were common in all analyzed vaccines and 54 proteins from the 206 proteins were potential antigens. The additionally present proteins may contribute at least partially to protection against C. tetani infection by supporting the function of the vaccine against the devastating effects of the tetanus toxin indirectly. Two different label-free protein quantification methods were applied for an estimation of protein contents. Similar results were obtained with a Total Protein Approach (TPA)-based method and Protein Discoverer 2.2 software package based on the minora algorithm. Depending on the tetanus toxoid vaccine and the quantification method used, tetanus neurotoxin contributes between 14 and 76 % to the total C. tetani protein content and varying numbers of other C. tetani proteins were detected.
Collapse
Affiliation(s)
- Jens Möller
- Microbiology Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Max Edmund Kraner
- Biochemistry Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| | - Andreas Burkovski
- Microbiology Division, Department of Biology, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany.
| |
Collapse
|
9
|
Marshall NC, Finlay BB, Overall CM. Sharpening Host Defenses during Infection: Proteases Cut to the Chase. Mol Cell Proteomics 2017; 16:S161-S171. [PMID: 28179412 PMCID: PMC5393396 DOI: 10.1074/mcp.o116.066456] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 01/14/2023] Open
Abstract
The human immune system consists of an intricate network of tightly controlled pathways, where proteases are essential instigators and executioners at multiple levels. Invading microbial pathogens also encode proteases that have evolved to manipulate and dysregulate host proteins, including host proteases during the course of disease. The identification of pathogen proteases as well as their substrates and mechanisms of action have empowered significant developments in therapeutics for infectious diseases. Yet for many pathogens, there remains a great deal to be discovered. Recently, proteomic techniques have been developed that can identify proteolytically processed proteins across the proteome. These “degradomics” approaches can identify human substrates of microbial proteases during infection in vivo and expose the molecular-level changes that occur in the human proteome during infection as an operational network to develop hypotheses for further research as well as new therapeutics. This Perspective Article reviews how proteases are utilized during infection by both the human host and invading bacterial pathogens, including archetypal virulence-associated microbial proteases, such as the Clostridia spp. botulinum and tetanus neurotoxins. We highlight the potential knowledge that degradomics studies of host–pathogen interactions would uncover, as well as how degradomics has been successfully applied in similar contexts, including use with a viral protease. We review how microbial proteases have been targeted in current therapeutic approaches and how microbial proteases have shaped and even contributed to human therapeutics beyond infectious disease. Finally, we discuss how, moving forward, degradomics research can greatly contribute to our understanding of how microbial pathogens cause disease in vivo and lead to the identification of novel substrates in vivo, and the development of improved therapeutics to counter these pathogens.
Collapse
Affiliation(s)
- Natalie C Marshall
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories
| | - B Brett Finlay
- From the ‡Department of Microbiology & Immunology.,§Michael Smith Laboratories.,¶Department of Biochemistry & Molecular Biology
| | - Christopher M Overall
- ¶Department of Biochemistry & Molecular Biology, .,**Department of Oral Biological & Medical Sciences, Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Walsh SI, Craney A, Romesberg FE. Not just an antibiotic target: Exploring the role of type I signal peptidase in bacterial virulence. Bioorg Med Chem 2016; 24:6370-6378. [PMID: 27769673 PMCID: PMC5279723 DOI: 10.1016/j.bmc.2016.09.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/17/2016] [Accepted: 09/19/2016] [Indexed: 01/23/2023]
Abstract
The looming antibiotic crisis has prompted the development of new strategies towards fighting infection. Traditional antibiotics target bacterial processes essential for viability, whereas proposed antivirulence approaches rely on the inhibition of factors that are required only for the initiation and propagation of infection within a host. Although antivirulence compounds have yet to prove their efficacy in the clinic, bacterial signal peptidase I (SPase) represents an attractive target in that SPase inhibitors exhibit broad-spectrum antibiotic activity, but even at sub-MIC doses also impair the secretion of essential virulence factors. The potential consequences of SPase inhibition on bacterial virulence have not been thoroughly examined, and are explored within this review. In addition, we review growing evidence that SPase has relevant biological functions outside of mediating secretion, and discuss how the inhibition of these functions may be clinically significant.
Collapse
Affiliation(s)
- Shawn I Walsh
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Arryn Craney
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Floyd E Romesberg
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Martinović T, Andjelković U, Gajdošik MŠ, Rešetar D, Josić D. Foodborne pathogens and their toxins. J Proteomics 2016; 147:226-235. [PMID: 27109345 DOI: 10.1016/j.jprot.2016.04.029] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/22/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
Abstract
UNLABELLED Foodborne pathogens, mostly bacteria and fungi, but also some viruses, prions and protozoa, contaminate food during production and processing, but also during storage and transport before consuming. During their growth these microorganisms can secrete different components, including toxins, into the extracellular environment. Other harmful substances can be also liberated and can contaminate food after disintegration of food pathogens. Some bacterial and fungal toxins can be resistant to inactivation, and can survive harsh treatment during food processing. Many of these molecules are involved in cellular processes and can indicate different mechanisms of pathogenesis of foodborne organisms. More knowledge about food contaminants can also help understand their inactivation. In the present review the use of proteomics, peptidomics and metabolomics, in addition to other foodomic methods for the detection of foodborne pathogenic fungi and bacteria, is overviewed. Furthermore, it is discussed how these techniques can be used for discovering biomarkers for pathogenicity of foodborne pathogens, determining the mechanisms by which they act, and studying their resistance upon inactivation in food of animal and plant origin. BIOLOGICAL SIGNIFICANCE Comprehensive and comparative view into the genome and proteome of foodborne pathogens of bacterial or fungal origin and foodomic, mostly proteomic, peptidomic and metabolomic investigation of their toxin production and their mechanism of action is necessary in order to get further information about their virulence, pathogenicity and survival under stress conditions. Furthermore, these data pave the way for identification of biomarkers to trace sources of contamination with food-borne microorganisms and their endo- and exotoxins in order to ensure food safety and prevent the outbreak of food-borne diseases. Therefore, detection of pathogens and their toxins during production, transport and before consume of food produce, as well as protection against food spoilage is a task of great social, economic and public health importance.
Collapse
Affiliation(s)
- Tamara Martinović
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Uroš Andjelković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Martina Šrajer Gajdošik
- Department of Chemistry, University of J. J. Strossmayer, Cara Hadrijana 8/A, 31000 Osijek, Croatia
| | - Dina Rešetar
- Centre of High-throughput Technologies, Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
12
|
The Staphylococcus aureus Chaperone PrsA Is a New Auxiliary Factor of Oxacillin Resistance Affecting Penicillin-Binding Protein 2A. Antimicrob Agents Chemother 2015; 60:1656-66. [PMID: 26711778 DOI: 10.1128/aac.02333-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
Expression of the methicillin-resistant S. aureus (MRSA) phenotype results from the expression of the extra penicillin-binding protein 2A (PBP2A), which is encoded by mecA and acquired horizontally on part of the SCCmec cassette. PBP2A can catalyze dd-transpeptidation of peptidoglycan (PG) because of its low affinity for β-lactam antibiotics and can functionally cooperate with the PBP2 transglycosylase in the biosynthesis of PG. Here, we focus upon the role of the membrane-bound PrsA foldase protein as a regulator of β-lactam resistance expression. Deletion of prsA altered oxacillin resistance in three different SCCmec backgrounds and, more importantly, caused a decrease in PBP2A membrane amounts without affecting mecA mRNA levels. The N- and C-terminal domains of PrsA were found to be critical features for PBP2A protein membrane levels and oxacillin resistance. We propose that PrsA has a role in posttranscriptional maturation of PBP2A, possibly in the export and/or folding of newly synthesized PBP2A. This additional level of control in the expression of the mecA-dependent MRSA phenotype constitutes an opportunity to expand the strategies to design anti-infective agents.
Collapse
|
13
|
Enany S, Abdalla S. In vitro antagonistic activity of Lactobacillus casei against Helicobacter pylori. Braz J Microbiol 2015; 46:1201-6. [PMID: 26691482 PMCID: PMC4704617 DOI: 10.1590/s1517-838246420140675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 02/02/2015] [Indexed: 12/15/2022] Open
Abstract
Helicobacter pylori is one of the most common causes of chronic
infections in humans. Curing H. pylori infection is difficult
because of the habitat of the organism below the mucus adherent layer of gastric
mucosa. Lactobacilli are known as acid-resistant bacteria and can remain in stomach
for a long time than any other organism, we aimed in this study to examine the
efficacy of Lactobacillus casei as a probiotic against H.
pylori in humans. Particularly, L. casei was opted as it
is considered to be one of the widely used probiotics in dairy products. One hundred
and seven strains of H. pylori were isolated from dyspeptic patients
and were tested for their antibiotic susceptibility to metronidazole (MTZ),
clarithromycin (CLR), tetracycline (TET), and amoxicillin (AMX) by the disc diffusion
method. The strains were examined for their susceptibility toward L. casei
- present in fermented milk products - by well diffusion method. It was
found that 74.7% strains were resistant to MTZ; 1.8% to MTZ, TET, and CLR; 3.7% to
MTZ and CLR; 4.6% to MTZ and TET; and 0.9% were resistant to MTZ, TET, and AMX. The
antibacterial activity of L. casei against H.
pylori was determined on all the tested H. pylori
isolates including antibiotic resistant strains with different patterns. Our study
proposed the use of probiotics for the treatment of H. pylori
infection as an effective approach.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Microbiology and Immunology, Suez Canal University, Ismailia, Egypt
| | - Salah Abdalla
- Department of Microbiology and Immunology, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
14
|
Magdeldin S, Elguoshy A, Yoshida Y, Hirao Y, Xu B, Zhang Y, Yamamoto K, Takimoto H, Fujinaka H, Kinoshita N, Yamamoto T. Complementary Protein and Peptide OFFGEL Fractionation for High-Throughput Proteomic Analysis. Anal Chem 2015; 87:8481-8. [DOI: 10.1021/acs.analchem.5b01911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Sameh Magdeldin
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
- Department
of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Amr Elguoshy
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
- Biotechnology
Department, Faculty of Agriculture, Al-Azhar University, Cairo 11682, Egypt
| | - Yutaka Yoshida
- Department
of Structural Pathology, Institute of Nephrology, Graduate
School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshitoshi Hirao
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| | - Bo Xu
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| | - Ying Zhang
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| | - Keiko Yamamoto
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| | - Hiroki Takimoto
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| | - Hidehiko Fujinaka
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| | - Naohiko Kinoshita
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| | - Tadashi Yamamoto
- Biofluid Biomarker
Center, Institute for Research Collaboration and Promotion, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
15
|
da Costa JP, Carvalhais V, Ferreira R, Amado F, Vilanova M, Cerca N, Vitorino R. Proteome signatures—how are they obtained and what do they teach us? Appl Microbiol Biotechnol 2015. [PMID: 26205520 DOI: 10.1007/s00253-015-6795-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Choose wisely: Network, ontology and annotation resources for the analysis of Staphylococcus aureus omics data. Int J Med Microbiol 2015; 305:339-47. [DOI: 10.1016/j.ijmm.2015.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/21/2015] [Accepted: 02/09/2015] [Indexed: 01/25/2023] Open
|
17
|
Comparative Exoproteomics and Host Inflammatory Response in Staphylococcus aureus Skin and Soft Tissue Infections, Bacteremia, and Subclinical Colonization. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:593-603. [PMID: 25809633 DOI: 10.1128/cvi.00493-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 03/21/2015] [Indexed: 11/20/2022]
Abstract
The exoproteome of Staphylococcus aureus contains enzymes and virulence factors that are important for host adaptation. We investigated the exoprotein profiles and cytokine/chemokine responses obtained in three different S. aureus-host interaction scenarios by using two-dimensional gel electrophoresis (2-DGE) and two-dimensional immunoblotting (2D-IB) combined with tandem mass spectrometry (MS/MS) and cytometric bead array techniques. The scenarios included S. aureus bacteremia, skin and soft tissue infections (SSTIs), and healthy carriage. By the 2-DGE approach, 12 exoproteins (the chaperone protein DnaK, a phosphoglycerate kinase [Pgk], the chaperone GroEL, a multisensor hybrid histidine kinase, a 3-methyl-2-oxobutanoate hydroxymethyltransferase [PanB], cysteine synthase A, an N-acetyltransferase, four isoforms of elongation factor Tu [EF-Tu], and one signature protein spot that could not be reliably identified by MS/MS) were found to be consistently present in more than 50% of the bacteremia isolates, while none of the SSTI or healthy-carrier isolates showed any of these proteins. By the 2D-IB approach, we also identified five antigens (methionine aminopeptidase [MetAPs], exotoxin 15 [Set15], a peptidoglycan hydrolase [LytM], an alkyl hydroperoxide reductase [AhpC], and a haptoglobin-binding heme uptake protein [HarA]) specific for SSTI cases. Cytokine and chemokine production varied during the course of different infection types and carriage. Monokine induced by gamma interferon (MIG) was more highly stimulated in bacteremia patients than in SSTI patients and healthy carriers, especially during the acute phase of infection. MIG could therefore be further explored as a potential biomarker of bacteremia. In conclusion, 12 exoproteins from bacteremia isolates, MIG production, and five antigenic proteins identified during SSTIs should be further investigated for potential use as diagnostic markers.
Collapse
|
18
|
Miyamoto H, Suzuki T, Murakami S, Fukuoka M, Tanaka Y, Kondo T, Nishimiya T, Suemori K, Tauchi H, Osawa H. Bacteriological characteristics of Arcanobacterium haemolyticum isolated from seven patients with skin and soft-tissue infections. J Med Microbiol 2015; 64:369-374. [PMID: 25666838 DOI: 10.1099/jmm.0.000038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/07/2015] [Indexed: 01/25/2023] Open
Abstract
Bacteriological examinations were conducted for seven Arcanobacterium haemolyticum strains isolated from elderly patients with skin and soft-tissue infections, such as cellulitis and skin ulcers. Streptococcus dysgalactiae or Gram-positive cocci were isolated together with A. haemolyticum from all patients. The strains were identified as A. haemolyticum based on their being catalase negative, reverse Christie, Atkins and Munch-Petersen (CAMP) positive and phospholipase D gene positive in respective tests. Moreover, API Coryne and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry confirmed the identification of A. haemolyticum. All strains showed good susceptibility to minocycline, vancomycin and β-lactam antibiotics, but several strains were resistant to gentamicin and levofloxacin.
Collapse
Affiliation(s)
- Hitoshi Miyamoto
- Infection Control Team, Ehime University Hospital, Toon, Japan.,Department of Clinical Laboratory, Ehime University Hospital, Toon, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Ehime University, Graduate School of Medicine, Toon, Japan.,Infection Control Team, Ehime University Hospital, Toon, Japan
| | - Shinobu Murakami
- Infection Control Team, Ehime University Hospital, Toon, Japan.,Department of Clinical Laboratory, Ehime University Hospital, Toon, Japan
| | - Mina Fukuoka
- Department of Clinical Laboratory, Ehime University Hospital, Toon, Japan
| | - Yuri Tanaka
- Department of Clinical Laboratory, Ehime University Hospital, Toon, Japan
| | - Takuya Kondo
- Department of Clinical Laboratory, Ehime University Hospital, Toon, Japan
| | - Tatsuya Nishimiya
- Department of Clinical Laboratory, Ehime University Hospital, Toon, Japan
| | - Koichiro Suemori
- Department of Hematology, Clinical Immunology and Infectious Disease, Ehime University Graduate School of Medicine, Toon, Japan.,Infection Control Team, Ehime University Hospital, Toon, Japan
| | - Hisamichi Tauchi
- Department of Pediatrics, Ehime University Graduate School of Medicine, Toon, Japan.,Infection Control Team, Ehime University Hospital, Toon, Japan
| | - Haruhiko Osawa
- Department of Clinical Laboratory, Ehime University Hospital, Toon, Japan
| |
Collapse
|
19
|
Magdeldin S, Blaser RE, Yamamoto T, Yates JR. Behavioral and proteomic analysis of stress response in zebrafish (Danio rerio). J Proteome Res 2014; 14:943-52. [PMID: 25398274 PMCID: PMC4324451 DOI: 10.1021/pr500998e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
The
purpose of this study is to determine the behavioral and proteomic
consequences of shock-induced stress in zebrafish (Danio rerio) as a vertebrate model. Here we describe the behavioral effects
of exposure to predictable and unpredictable electric shock, together
with quantitative tandem mass tag isobaric labeling workflow to detect
altered protein candidates in response to shock exposure. Behavioral
results demonstrate a hyperactivity response to electric shock and
a suppression of activity to a stimulus predicting shock. On the basis
of the quantitative changes in protein abundance following shock exposure,
eight proteins were significantly up-regulated (HADHB, hspa8, hspa5,
actb1, mych4, atp2a1, zgc:86709, and zgc:86725). These proteins contribute
crucially in catalytic activities, stress response, cation transport,
and motor activities. This behavioral proteomic driven study clearly
showed that besides the rapid induction of heat shock proteins, other
catalytic enzymes and cation transporters were rapidly elevated as
a mechanism to counteract oxidative stress conditions resulting from
elevated fear/anxiety levels.
Collapse
Affiliation(s)
- Sameh Magdeldin
- Department of Structural Pathology, Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata University , 1-757 Asahimachi-dori, Niigata 951-8510, Japan
| | | | | | | |
Collapse
|
20
|
Efficient production of secreted staphylococcal antigens in a non-lysing and proteolytically reduced Lactococcus lactis strain. Appl Microbiol Biotechnol 2014; 98:10131-41. [DOI: 10.1007/s00253-014-6030-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/06/2014] [Accepted: 08/21/2014] [Indexed: 01/20/2023]
|
21
|
|
22
|
François P, Scherl A, Hochstrasser D, Schrenzel J. Proteomic approach to investigate pathogenicity and metabolism of methicillin-resistant Staphylococcus aureus. Methods Mol Biol 2014; 1085:231-50. [PMID: 24085700 DOI: 10.1007/978-1-62703-664-1_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Over the last two decades, numerous genomes of pathogenic bacteria have been fully sequenced and annotated, while others are continuously being sequenced. To date, the sequences of more than 8,500 whole bacterial genomes are publicly available for research purposes. These efforts in high-throughput sequencing simultaneously to progresses in methods allowing to study whole transcriptome and proteome of bacteria provide the basis of comprehensive understanding of metabolism, adaptability to environment, regulation, resistance pathways, or pathogenicity mechanisms of bacterial pathogens. Staphylococcus aureus is a Gram-positive human pathogen causing a wide variety of infections ranging from benign skin infection to life-threatening diseases. Furthermore, the spreading of multidrug-resistant isolates requiring the use of last barrier drugs has resulted in a particular attention of the medical and scientific community to this pathogen. We describe here proteomic methods to prepare, identify, and analyze protein fractions, which allow studying Staphylococcus aureus on the organism level. Besides evaluation of the whole bacterial transcriptome, this approach might contribute to the development of rapid diagnostic tests and to the identification of new drug targets to improve public health.
Collapse
Affiliation(s)
- Patrice François
- Service of Infectious Diseases, Genomic Research Laboratory, Geneva, Switzerland
| | | | | | | |
Collapse
|
23
|
Exploring extra-cellular proteins in methicillin susceptible and methicillin resistant Staphylococcus aureus by liquid chromatography-tandem mass spectrometry. World J Microbiol Biotechnol 2013; 30:1269-83. [PMID: 24214678 DOI: 10.1007/s11274-013-1550-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/30/2013] [Indexed: 01/06/2023]
Abstract
Staphylococcus aureus (S. aureus) strains cause several diseases in humans from minor skin infections to severe lethal infections. To explore the virulence determinants of this important microorganism, two clinical isolates of methicillin susceptible S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) were subjected to proteomic analysis of their extracellular products using liquid chromatography-tandem mass spectrometry. The numbers of proteins identified in MSSA and MRSA extracellular products were 168 and 261; respectively, from them 117 were shared, while 144 proteins were unique to MRSA. The shared proteins, having a higher protein score with increased number of peptide matches in MRSA over MSSA, reflect the relatively active secretory state of MRSA rather than biased analytical variances. Characteristic determinants for MRSA were identified; mostly found to play a role in the virulence. We conclude that MRSA produces distinct proteins considered as its virulence determinants and we found that the shared extracellular products are more abundant in MRSA than MSSA that supporting the high invasiveness of MRSA over MSSA in pathogenesis.
Collapse
|
24
|
Tanca A, Biosa G, Pagnozzi D, Addis MF, Uzzau S. Comparison of detergent-based sample preparation workflows for LTQ-Orbitrap analysis of the Escherichia coli proteome. Proteomics 2013; 13:2597-607. [PMID: 23784971 DOI: 10.1002/pmic.201200478] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 04/09/2013] [Accepted: 05/28/2013] [Indexed: 11/06/2022]
Abstract
This work presents a comparative evaluation of several detergent-based sample preparation workflows for the MS-based analysis of bacterial proteomes, performed using the model organism Escherichia coli. Initially, RapiGest- and SDS-based buffers were compared for their protein extraction efficiency and quality of the MS data generated. As a result, SDS performed best in terms of total protein yields and overall number of MS identifications, mainly due to a higher efficiency in extracting high molecular weight (MW) and membrane proteins, while RapiGest led to an enrichment in periplasmic and fimbrial proteins. Then, SDS extracts underwent five different MS sample preparation workflows, including: detergent removal by spin columns followed by in-solution digestion (SC), protein precipitation followed by in-solution digestion in ammonium bicarbonate or urea buffer, filter-aided sample preparation (FASP), and 1DE separation followed by in-gel digestion. On the whole, about 1000 proteins were identified upon LC-MS/MS analysis of all preparations (>1100 with the SC workflow), with FASP producing more identified peptides and a higher mean sequence coverage. Each protocol exhibited specific behaviors in terms of MW, hydrophobicity, and subcellular localization distribution of the identified proteins; a comparative assessment of the different outputs is presented.
Collapse
Affiliation(s)
- Alessandro Tanca
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | | | | | | | | |
Collapse
|
25
|
Enany S, Yoshida Y, Magdeldin S, Bo X, Zhang Y, Enany M, Yamamoto T. Two dimensional electrophoresis of the exo-proteome produced from community acquired methicillin resistant Staphylococcus aureus belonging to clonal complex 80. Microbiol Res 2013; 168:504-11. [PMID: 23566758 DOI: 10.1016/j.micres.2013.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/07/2013] [Accepted: 03/10/2013] [Indexed: 12/22/2022]
Abstract
Two-dimensional electrophoresis (2DE) combined with mass spectrometry was used to characterize the exo-proteome secreted by two strains (ER13 and ER21) representing community acquired methicillin resistant Staphylococcus aureus (CA-MRSA) belonging to clonal complex 80 (CC80). Common spots were detected between the 2 gels using the Progenesis SameSpots software. Two hundred and fifty-one and 312 spots from the exo-proteome of ER13 and ER21 were resolved, respectively. 2DE overlap comparison showed that 59 spots were shared. LC-MS/MS analysis identified 57 proteins from these spots comprising about 21% extracellular, 48% cytoplasmic, 2% cytoplasmic membrane, 2% cell wall, and 26% with unknown localization. The identified proteins were classified with respect to their Gene Ontology (GO) annotation as ∼24% virulence determinants and toxins, ∼17% involved in carbohydrate metabolism, ∼14% involved in environmental stress, and ∼12% associated with cell division. The identification of the enterotoxin B from the exo-products of both strains used in our study, as belonging to CC80 was interesting.
Collapse
Affiliation(s)
- Shymaa Enany
- Department of Structural Pathology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.
| | | | | | | | | | | | | |
Collapse
|