1
|
Islam MM, Asif F, Zaman SU, Arnab MKH, Rahman MM, Hasan M. Effect of charge on the antimicrobial activity of alpha-helical amphibian antimicrobial peptide. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100182. [PMID: 36926259 PMCID: PMC10011193 DOI: 10.1016/j.crmicr.2023.100182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Antibiotic resistance is a severe threat to the world's public health, which has increased the need to discover novel antibacterial molecules. In this context, an emerging class of naturally occurring short peptide molecules called antimicrobial peptides (AMPs) has been considered potent antibacterial agents. Amphibians are one of the significant sources of AMPs, which have been extensively studied for the last few decades. Most amphibian AMPs are cationic, and several of these cationic AMPs adopt a well-defined alpha-helical structure in the presence of bacterial membranes. These cationic alpha-helical amphibian AMPs (CαAMPs) can selectively and preferentially bind with the negatively charged surfaces of Gram-positive and Gram-negative bacteria through electrostatic interaction, considered the main reason for their antibacterial activities. Here, we categorized these CαAMPs according to their charge, and to calculate the charge density; we divided the charge of each peptide by its corresponding length. To investigate the effect of charge among these categories, charge or charge density under each charge category was plotted against their corresponding minimum inhibitory concentration (MIC). Moreover, the effect of charge modification of some CαAMPs under specific charge categories in the context of MIC and hemolysis was also discussed. The information in this review will help us understand the antibacterial activity of accessible CαAMPs depending on each charge category across species. Additionally, this study suggests that designing novel functional antibacterial agents requires charge modification optimally.
Collapse
Affiliation(s)
- Md Monirul Islam
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Fahim Asif
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | - Sabbir Uz Zaman
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| | | | | | - Moynul Hasan
- Department of Pharmacy, Jagannath University, Dhaka 1100, Bangladesh
| |
Collapse
|
2
|
Fan XL, Yu SS, Zhao JL, Li Y, Zhan DJ, Xu F, Lin ZH, Chen J. Brevinin-2PN, an antimicrobial peptide identified from dark-spotted frog (Pelophylax nigromaculatus), exhibits wound-healing activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104519. [PMID: 36041640 DOI: 10.1016/j.dci.2022.104519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Brevinins exhibit a wide range of structural features and strong biological activities. Brevinin-2, derived from several amphibians, has shown antimicrobial activities. However, little is known about the wound-healing activity of brevinin-2. In this study, brevinin-2 cDNA was identified from the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus) and it comprises a signal peptide, a propeptide, and a mature peptide. Sequence alignment with brevinin-2 derived from other amphibians showed variability of the mature peptide, and the presence of a C-terminal cyclic heptapeptide domain (Cys-Lys-Xaa4-Cys) in the mature peptide. Dark-spotted frog brevinin-2 belonged to the brevinin-2 cluster and was closely related to brevinin-2HB1 from Pelophylax hubeiensis. Synthetic dark-spotted frog brevinin-2 mature peptide (brevinin-2PN) exhibited antibacterial activity against several pathogens by destroying cell membrane integrity and hydrolysis of genomic DNA. Brevinin-2PN exhibited significant wound-healing activity by accelerating the healing of human skin fibroblast cell scratches, influencing cell migration, and stimulating gene expression of growth factors.
Collapse
Affiliation(s)
- Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Shui-Sheng Yu
- Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Jia-Le Zhao
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yue Li
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Du-Juan Zhan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Feng Xu
- Institute of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
3
|
Targeted Modification and Structure-Activity Study of GL-29, an Analogue of the Antimicrobial Peptide Palustrin-2ISb. Antibiotics (Basel) 2022; 11:antibiotics11081048. [PMID: 36009917 PMCID: PMC9405102 DOI: 10.3390/antibiotics11081048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial peptides (AMPs) are considered as promising antimicrobial agents due to their potent bioactivity. Palustrin-2 peptides were previously found to exhibit broad-spectrum antimicrobial activity with low haemolytic activity. Therefore, GL-29 was used as a template for further modification and study. Firstly, the truncated analogue, GL-22, was designed to examine the function of the ‘Rana box’, which was confirmed to have no impact on antimicrobial activity. The results of antimicrobial activity assessment against seven microorganisms demonstrated GL-22 to have a broad-spectrum antimicrobial activity, but weak potency against Candida albicans (C. albicans). These data were similar to those of GL-29, but GL-22 showed much lower haemolysis and lower cytotoxicity against HaCaT cells. Moreover, GL-22 exhibited potent in vivo activity at 4 × MIC against Staphylococcus aureus (S. aureus)-infected larvae. Several short analogues, from the C-terminus and N-terminus of GL-22, were modified to identify the shortest functional motif. However, the results demonstrated that the shorter peptides did not exhibit potent antimicrobial activity, and the factors that affect the bioactive potency of these short analogues need to be further studied.
Collapse
|
4
|
Azmi S, Hussain MK. Analysis of structures, functions, and transgenicity of phytopeptides defensin and thionin: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2021. [DOI: 10.1186/s43088-020-00093-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Antimicrobial peptides are very primitive innate defense molecules of almost all organisms, from microbes to mammalians and vascular seed-bearing plants. Antimicrobial peptides of plants categorized into cysteine-rich peptides (CRPs) and others and most of the antimicrobial peptides belong to CRPs group. These peptides reported showing the great extent of protecting property against bacteria, fungi, viruses, insect, nematode, and another kind of microbes. To develop a resistant plant against pathogenic fungi, there have been several studies executed to understand the efficiency of transgenicity of these antimicrobial peptides.
Main text
Apart from the intrinsic property of the higher organism for identifying and activating microbial attack defense device, it also involves innate defense mechanism and molecules. In the current review article, apart from the structural and functional characterization of peptides defensin and thionin, we have attempted to provide a succinct overview of the transgenic development of these defense peptides, that are expressed in a constitutive and or over-expressive manner when biotic and abiotic stress inflicted. Transgenic of different peptides show different competence in plants. Most of the transgenic studies made for defensin and thionin revealed the effective transgenic capacity of these peptides.
Conclusion
There have been several studies reported successful development of transgenic plants based on peptides defensin and thionin and observed diverse level of resistance-conferring potency in different plants against phytopathogenic fungi. But due to long regulatory process, there has not been marketed any antimicrobial peptides based transgenic plants yet. However, success report state that possibly in near future transgenic plants of AMPs would be released with devoid of harmful effect, with good efficiency, reproducibility, stability, and least production cost.
Collapse
|
5
|
Munusamy S, Conde R, Bertrand B, Munoz-Garay C. Biophysical approaches for exploring lipopeptide-lipid interactions. Biochimie 2020; 170:173-202. [PMID: 31978418 PMCID: PMC7116911 DOI: 10.1016/j.biochi.2020.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
In recent years, lipopeptides (LPs) have attracted a lot of attention in the pharmaceutical industry due to their broad-spectrum of antimicrobial activity against a variety of pathogens and their unique mode of action. This class of compounds has enormous potential for application as an alternative to conventional antibiotics and for pest control. Understanding how LPs work from a structural and biophysical standpoint through investigating their interaction with cell membranes is crucial for the rational design of these biomolecules. Various analytical techniques have been developed for studying intramolecular interactions with high resolution. However, these tools have been barely exploited in lipopeptide-lipid interactions studies. These biophysical approaches would give precise insight on these interactions. Here, we reviewed these state-of-the-art analytical techniques. Knowledge at this level is indispensable for understanding LPs activity and particularly their potential specificity, which is relevant information for safe application. Additionally, the principle of each analytical technique is presented and the information acquired is discussed. The key challenges, such as the selection of the membrane model are also been briefly reviewed.
Collapse
Affiliation(s)
- Sathishkumar Munusamy
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Renaud Conde
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico
| | - Brandt Bertrand
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico
| | - Carlos Munoz-Garay
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Mexico.
| |
Collapse
|
6
|
Patocka J, Nepovimova E, Klimova B, Wu Q, Kuca K. Antimicrobial Peptides: Amphibian Host Defense Peptides. Curr Med Chem 2019; 26:5924-5946. [PMID: 30009702 DOI: 10.2174/0929867325666180713125314] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023]
Abstract
Antimicrobial Peptides (AMPs) are one of the most common components of the innate immune system that protect multicellular organisms against microbial invasion. The vast majority of AMPs are isolated from the frog skin. Anuran (frogs and toads) skin contains abundant AMPs that can be developed therapeutically. Such peptides are a unique but diverse group of molecules. In general, more than 50% of the amino acid residues form the hydrophobic part of the molecule. Normally, there are no conserved structural motifs responsible for activity, although the vast majority of the AMPs are cationic due to the presence of multiple lysine residues; this cationicity has a close relationship with antibacterial activity. Notably, recent evidence suggests that synthesis of AMPs in frog skin may confer an advantage on a particular species, although they are not essential for survival. Frog skin AMPs exert potent activity against antibiotic-resistant bacteria, protozoa, yeasts, and fungi by permeating and destroying the plasma membrane and inactivating intracellular targets. Importantly, since they do not bind to a specific receptor, AMPs are less likely to induce resistance mechanisms. Currently, the best known amphibian AMPs are esculentins, brevinins, ranacyclins, ranatuerins, nigrocin-2, magainins, dermaseptins, bombinins, temporins, and japonicins-1 and -2, and palustrin-2. This review focuses on these frog skin AMPs and the mechanisms underlying their antimicrobial activity. We hope that this review will provide further information that will facilitate further study of AMPs and cast new light on novel and safer microbicides.
Collapse
Affiliation(s)
- Jiri Patocka
- Department of Radiology and Toxicology, Faculty of Health and Social Studies, University of South Bohemia Ceske Budejovice, Ceske Budejovice, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Blanka Klimova
- Faculty of Informatics and Management, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
7
|
Romero SM, Cardillo AB, Martínez Ceron MC, Camperi SA, Giudicessi SL. Temporins: An Approach of Potential Pharmaceutic Candidates. Surg Infect (Larchmt) 2019; 21:309-322. [PMID: 31804896 DOI: 10.1089/sur.2019.266] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides (AMPs), also known as host defense peptides, are small and mostly polycationic molecules that form part of the innate immune response. There are currently more than 3000 experimentally reported AMPs. Particularly in frogs, the temporin family has been discovered as potential AMPs. The aim of this work is to review the latest publications about this class of peptides, discuss their properties, and present an update of the last studies and new discoveries in the field. More than 130 temporins have been identified in this family. The most studied temporins are temporin A (TA), temporin B (TB), and temporin L (TL). These peptides showed antimicrobial activity against gram-negative, gram-positive bacteria and fungi. Since the discovery of temporins in 1996, several groups of researchers isolated different peptides from various species of frogs that were included as members of this family. Although antimicrobial activity of many temporins has not been analyzed yet, most of them showed antimicrobial and antifungal activities. A combination of nanotechnology and AMPs for temporins in different antimicrobial treatments could be a promising alternative for resistant pathogens. These studies demonstrate that, even with the advancement in scientific research on the composition and antimicrobial activity of temporins, further studies are necessary to wholly understand their components and mechanisms of action.
Collapse
Affiliation(s)
- Stella Maris Romero
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Córdoba, Argentina
| | - Alejandra Beatriz Cardillo
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - María Camila Martínez Ceron
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvia Andrea Camperi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| | - Silvana Laura Giudicessi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Cátedra de Biotecnología, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina
| |
Collapse
|
8
|
Conlon JM, Mechkarska M, Leprince J. Peptidomic analysis in the discovery of therapeutically valuable peptides in amphibian skin secretions. Expert Rev Proteomics 2019; 16:897-908. [DOI: 10.1080/14789450.2019.1693894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- J. Michael Conlon
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom of Great Britain and Northern Ireland
| | - Milena Mechkarska
- Department of Life Sciences, University of the West Indies at Saint Augustine, Saint Augustine, Trinidad and Tobago
| | - Jérôme Leprince
- Equipe Facteurs Neurotrophiques et Différenciation Neuronale, Universite de Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
9
|
Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem 2018; 256:98-104. [DOI: 10.1016/j.foodchem.2018.02.107] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 02/20/2018] [Indexed: 01/13/2023]
|
10
|
In vitro and in vivo anticandidal activities of alginate-enclosed chitosan-calcium phosphate-loaded Fe-bovine lactoferrin nanocapsules. Future Sci OA 2017; 4:FSO257. [PMID: 29379633 PMCID: PMC5778379 DOI: 10.4155/fsoa-2017-0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/27/2017] [Indexed: 12/28/2022] Open
Abstract
Aim: To study the in vitro and in vivo anticandidal activity of nanocapsulated bovine lactoferrin. Materials & methods: In vitro and in vivo antimicrobial activities were conducted to study the anticandidal activities of nanocapsules (NCs). Results: The NCs showed good anticandidal activities. The disruption of cell wall and cell membrane was noted via microscopy studies. The NCs changed the normal growth profile of Candida albicans. NCs reduced the colony forming unit in kidney and blood samples. Histopathological examination showed better cell structure and coordination compared with untreated mice kidney. NCs also enhanced the natural killing properties of C. albicans by epithelial cells. Conclusion: NCs have effective anticandidal properties and have the potential as a therapeutic agent against candidiasis. Previous study revealed that lactoferrin had potent anticandidal action against C. albicans. However, encapsulated lactoferrin has never been tested for anticandidal activity in detail. In the present study, we evaluate nanocapsulated lactoferrin for anticandidal effects. To observe the anticandidal properties of encapsulated lactoferrin, various studies were conducted. Our findings showed that encapsulated lactoferrin demonstrates remarkable efficacy against C. albicans.
Collapse
|
11
|
Dong Z, Luo W, Zhong H, Wang M, Song Y, Deng S, Zhang Y. Molecular cloning and characterization of antimicrobial peptides from skin of Hylarana guentheri. Acta Biochim Biophys Sin (Shanghai) 2017; 49:450-457. [PMID: 28338958 DOI: 10.1093/abbs/gmx023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Indexed: 11/14/2022] Open
Abstract
The cDNAs encoding antimicrobial peptides (AMPs) in the skin of Hylarana guentheri were identified, namely temporin (five peptides, termed temporin-GHa-GHd and temporin-GUa), brevinin-1 (one peptide, brevinin-1GUb), and brevinin-2 (eight peptides, brevinin-2GHd-2GHj, and brevinin-2GHb). Eleven of the 14 peptides have novel primary structures. Synthesized temporin GHa-GHd have broad-spectrum antimicrobial activities against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli, Vibrio alginolyticus, and Pseudomonas aeruginosa), as well as fungus (Candida albicans). Among these tested strains, S. aureus was the most sensitive to temporin-GHa-GHd with minimum inhibitory concentration (MIC) values between 6.8 and 12.9 μM. They also exhibited antimicrobial activities against Methicillin-resistant S. aureus with the MIC ranging from 12.7 to 51.7 μM. Interestingly, secondary structure prediction shows that there is no α-helix in temporin-GHb, which illustrates that α-helix is not required for the antimicrobial activity of temporin-GHb. NaCl (at final concentrations of 0.15-2 M) decreased the antimicrobial activity of temporin-GHa-GHd slightly, while human serum and S. aureus V8 proteinase had no effect on the antimicrobial activity. Scanning electron microscopy images of E. coli and S. aureus showed that the surface of microbial cells was considerably rough and shrived after 1 h of treatment with temporin-GHa-GHd at 37°C. The stabilities of temporin-GHa-GHd in human serum or in S. aureus V8 proteinase make them to be promising candidates of novel antimicrobial agents or models for the development of novel AMPs.
Collapse
Affiliation(s)
- Zhu Dong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Wenjie Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Hengren Zhong
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Manchuriga Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, Hainan University, Haikou 570228, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Shiming Deng
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, College of Marine Science, Hainan University, Haikou 570228, China
| |
Collapse
|
12
|
Jiang Y, Fan W, Xu J. De novo transcriptome analysis and antimicrobial peptides screening in skin of Paa boulengeri. Genes Genomics 2017. [DOI: 10.1007/s13258-017-0532-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Host Defense Peptides from Asian Frogs as Potential Clinical Therapies. Antibiotics (Basel) 2015; 4:136-59. [PMID: 27025618 PMCID: PMC4790330 DOI: 10.3390/antibiotics4020136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 01/12/2023] Open
Abstract
Host defense peptides (HDPs) are currently major focal points of medical research as infectious microbes are gaining resistance to existing drugs. They are effective against multi-drug resistant pathogens due to their unique primary target, biological membranes, and their peculiar mode of action. Even though HDPs from 60 Asian frog species belonging to 15 genera have been characterized, research into these peptides is at a very early stage. The purpose of this review is to showcase the status of peptide research in Asia. Here we provide a summary of HDPs from Asian frogs.
Collapse
|
14
|
Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115:1760-846. [PMID: 25594509 DOI: 10.1021/cr4006704] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xueqing Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China
| | | |
Collapse
|
15
|
|
16
|
Guo C, Hu Y, Li J, Liu Y, Li S, Yan K, Wang X, Liu J, Wang H. Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. Biochimie 2014; 105:192-201. [PMID: 25066917 DOI: 10.1016/j.biochi.2014.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/15/2014] [Indexed: 11/27/2022]
Abstract
Amphibian skin and its secretions contain many kinds of peptides with different bioactivities. In this study, a large number of peptides including antioxidant and antimicrobial peptides were identified from three East Asian frog species Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. The majority of these peptides were antimicrobial peptides, while eight antioxidant peptides were identified, which included two novel peptides taipehensin-1TP1 (TLIWEFYHQILDEYNKENKG) and taipehensin-2TP1 (CLMARPNYRCKIFKQC). These antioxidant peptides exhibited the ability to scavenge ABTS and/or DPPH free radicals. Moreover, six out of eight antioxidant peptides temporin-TP1, brevinin-1TP1, brevinin-1TP2, brevinin-1TP3, brevinin-1LF1, and palustrin-2GN1 also showed antimicrobial activity.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yuhong Hu
- Instrumental Analysis Center, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jing Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yuliang Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Sihan Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Keqiang Yan
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Xiao Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Jingze Liu
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Hui Wang
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| |
Collapse
|
17
|
Hu Y, Xu S, Hu Y, Guo C, Meng H, Li J, Liu J, Wang H. Diverse Families of Antimicrobial Peptides Isolated from Skin Secretions of Three Species of East Asian Frogs,Babina daunchina,Babina adenopleura, andRana omeimontis(Ranidae). Zoolog Sci 2014; 31:438-44. [DOI: 10.2108/zs140014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Hu Y, Yu Z, Xu S, Hu Y, Guo C, Li F, Li J, Liu J, Wang H. Peptidomic analysis of antimicrobial peptides in skin secretions of Amolops mantzorum. Zoolog Sci 2014; 31:143-51. [PMID: 24601776 DOI: 10.2108/zsj.31.143] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amphibian skin secretions contain abundant bioactive peptides that are valuable natural resources for human beings. However, many amphibians are disappearing from the world, making relevant scientific studies even more important. In this study, 24 cDNA sequences encoding antimicrobial peptide (AMP) precursors were initially cloned by screening a cDNA library derived from the skin of the Sichuan torrent frog, Amolops mantzorum. Eighteen mature AMPs belonging to 11 different families were deduced from these cDNA clones. Biological function was confirmed in each family of these AMPs. Some of them were purified from the skin secretions, and their molecular structures were determined by Edman degradation. Liquid chromatography in conjunction with tandem mass spectrometry (LC-MS/MS)-based peptidomics was used to further confirm the actual presence and characteristics of mature AMPs in the skin secretions of A. mantzorum. Incomplete tryptic digestion and gas-phase fractionation (GPF) analysis were used to increase the peptidome coverage and reproducibility of peptide ion selection.
Collapse
Affiliation(s)
- Yuhong Hu
- 1 Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Conlon JM, Kolodziejek J, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Nielsen PF, Nowotny N, King JD. Host defense peptides from Lithobates forreri, Hylarana luctuosa, and Hylarana signata (Ranidae): phylogenetic relationships inferred from primary structures of ranatuerin-2 and brevinin-2 peptides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 9:49-57. [PMID: 24463457 DOI: 10.1016/j.cbd.2014.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/01/2014] [Accepted: 01/03/2014] [Indexed: 11/30/2022]
Abstract
The primary structures of host-defense peptides present in frog skin secretions constitute useful molecular markers for establishing taxonomic classifications and investigating phylogenetic relationships between species within a particular genus. Peptidomic analysis has led to the characterization of multiple host-defense peptides in norepinephrine-stimulated skin secretions of three species of frogs from the family Ranidae: Lithobates forreri (Boulenger, 1883), Hylarana luctuosa (Peters, 1871), and Hylarana signata (Günther, 1872). The L. forreri secretions contain ranatuerin-2 (2 peptides), brevinin-1 (4 peptides), and temporin (1 peptide). The H. luctuosa secretions contain brevinin-2 (4 peptides), esculentin-1 (1 peptide), esculentin-2 (1 peptide), palustrin-2 (2 peptides), and temporin (2 peptides). The H. signata secretions contain brevinin-2 (4 peptides), brevinin-1 (5 peptides), palustrin-2 (1 peptide), and temporin (2 peptides). Cladistic analysis based upon the primary structures of 44 ranatuerin-2 peptides from 20 Lithobates species indicates a close phylogenetic relationship between L. forreri, Lithobates onca, and Lithobates yavapaiensis. A similar cladistic analysis based upon the primary structures of 27 brevinin-2 peptides from 8 Hylarana species provides support for a close phylogenetic relationship between H. signata and Hylarana picturata, while showing that the species are not conspecific, with H. luctuosa more distantly related.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | - Laurent Coquet
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; INSERM U-982, PRIMACEN, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; INSERM U-982, PRIMACEN, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Per F Nielsen
- Protein Science, Novo Nordisk A/S, 2760 Maalöv, Denmark
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, Department of Pathobiology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Jay D King
- Rare Species Conservatory Foundation, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Identification of multiple antimicrobial peptides from the skin of fine-spined frog, Hylarana spinulosa (Ranidae). Biochimie 2013; 95:2429-36. [DOI: 10.1016/j.biochi.2013.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 09/04/2013] [Indexed: 11/19/2022]
|
21
|
Cologna CT, Cardoso JDS, Jourdan E, Degueldre M, Upert G, Gilles N, Uetanabaro APT, Costa Neto EM, Thonart P, de Pauw E, Quinton L. Peptidomic comparison and characterization of the major components of the venom of the giant ant Dinoponera quadriceps collected in four different areas of Brazil. J Proteomics 2013; 94:413-22. [DOI: 10.1016/j.jprot.2013.10.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/04/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|