1
|
Dou X, Jurenka R. Pheromone biosynthesis activating neuropeptide family in insects: a review. Front Endocrinol (Lausanne) 2023; 14:1274750. [PMID: 38161974 PMCID: PMC10755894 DOI: 10.3389/fendo.2023.1274750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Neuropeptides are involved in almost all physiological activities of insects. Their classification is based on physiological function and the primary amino acid sequence. The pyrokinin (PK)/pheromone biosynthesis activating neuropeptides (PBAN) are one of the largest neuropeptide families in insects, with a conserved C-terminal domain of FXPRLamide. The peptide family is divided into two groups, PK1/diapause hormone (DH) with a WFGPRLa C-terminal ending and PK2/PBAN with FXPRLamide C-terminal ending. Since the development of cutting-edge technology, an increasing number of peptides have been sequenced primarily through genomic, transcriptomics, and proteomics, and their functions discovered using gene editing tools. In this review, we discussed newly discovered functions, and analyzed the distribution of genes encoding these peptides throughout different insect orders. In addition, the location of the peptides that were confirmed by PCR or immunocytochemistry is also described. A phylogenetic tree was constructed according to the sequences of the receptors of most insect orders. This review offers an understanding of the significance of this conserved peptide family in insects.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, University of Georgia, Athens, GA, United States
| | - Russell Jurenka
- Department of Plant Pathology, Entomology, Microbiology Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Neupert S, Marciniak P, Köhler R, Nachman RJ, Suh CPC, Predel R. Different processing of CAPA and pyrokinin precursors in the giant mealworm beetle Zophobas atratus (Tenebrionidae) and the boll weevil Anthonomus grandis grandis (Curculionidae). Gen Comp Endocrinol 2018; 258:53-59. [PMID: 28867173 DOI: 10.1016/j.ygcen.2017.08.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/16/2017] [Accepted: 08/27/2017] [Indexed: 11/24/2022]
Abstract
Capa and pyrokinin (pk) genes in hexapods share a common evolutionary origin. Using transcriptomics and peptidomics, we analyzed products of these genes in two beetles, the giant mealworm beetle (Zophobas atratus; Tenebrionidae) and the boll weevil (Anthonomus grandis grandis; Curculionidae). Our data revealed that even within Coleoptera, which represents a very well-defined group of insects, highly different evolutionary developments occurred in the neuropeptidergic system. These differences, however, primarily affect the general structure of the precursors and differential processing of mature peptides and, to a lesser degree, the sequences of the active core motifs. With the differential processing of the CAPA-precursor in Z. atratus we found a perfect example of completely different products cleaved from a single neuropeptide precursor in different cells. The CAPA precursor in abdominal ganglia of this species yields primarily periviscerokinins (PVKs) whereas processing of the same precursor in neurosecretory cells of the subesophageal ganglion results in CAPA-tryptoPK and a novel CAPA-PK. Particularly important was the detection of that CAPA-PK which has never been observed in the CNS of insects before. The three different types of CAPA peptides (CAPA-tryptoPK, CAPA-PK, PVK) each represent potential ligands which activate different receptors. In contrast to the processing of the CAPA precursor from Z. atratus, no indications of a differential processing of the CAPA precursor were found in A. g. grandis. These data suggest that rapid evolutionary changes regarding the processing of CAPA precursors were still going on when the different beetle lineages diverged. The sequence of the single known PVK of A. g. grandis occupies a special position within the known PVKs of insects and might serve asa basis to develop lineage-specific peptidomimetics capable of disrupting physiological processes regulated by PVKs.
Collapse
Affiliation(s)
- Susanne Neupert
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany; Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Pawel Marciniak
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany; Department of Animal Physiology and Development, Adam Mickiewicz University in Poznan, Umutlowska Str. 89, 61-614 Poznań, Poland
| | - Rene Köhler
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany; Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Charles P-C Suh
- Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, US Department of Agriculture, College Station, TX 77845, United States
| | - Reinhard Predel
- Functional Peptidomics Group, Institute for Zoology, Department of Biology, University of Cologne, Zuelpicher Str. 47b, D-50674 Cologne, Germany.
| |
Collapse
|
3
|
Choi MY, Sanscrainte ND, Estep AS, Vander Meer RK, Becnel JJ. Identification and expression of a new member of the pyrokinin/pban gene family in the sand fly Phlebotomus papatasi. JOURNAL OF INSECT PHYSIOLOGY 2015; 79:55-62. [PMID: 26050919 DOI: 10.1016/j.jinsphys.2015.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 06/04/2023]
Abstract
The major family of neuropeptides (NPs) derived from the pk (pyrokinin)/pban (pheromone biosynthesis activating neuropeptide) gene are defined by a common FXPRL-NH2 or similar sequence at the C-termini. This family of peptides has been found in all insect groups investigated to date and is implicated in regulating various physiological functions, including pheromone biosynthesis and diapause, but other functions are still largely unknown in specific life stages. Here we identify two isoforms of pk/pban cDNA encoding the PBAN domain from the sand fly Phlebotomus papatasi. The two pk/pban isoforms have the same sequence except for a 63 nucleotide difference between the long and short forms, and contain no alternative mRNA splicing site. Two NP homologues, DASGDNGSDSQRTRPPFAPRLamide and SLPFSPRLamide are expected, however, sequence corresponding to the diapause hormone was not found in the P. papatasi pk/pban gene. The PBAN-like amino acid sequence homologue SNKYMTPRL is conserved in the gene, but there is no cleavage site for processing a functional peptide. Characterizing the expression of the isoforms in developmental stages and adults indicates that the short form is differentially transcribed depending on the life stage. The P. papatasi pk/pban gene is the only known pk/pban gene with two transcriptional isoforms and from examination of endoproteolytic cleavage sites is expected to produce fewer peptides than most of the pk/pban genes elucidated to date; only Drosophila melanogaster is simpler with a single NP detected by mass spectroscopy. A phylogenetic analysis showed P. papatasi pk/pban grouped more closely with other nematoceran flies rather than higher flies.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| | - Neil D Sanscrainte
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Alden S Estep
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA; Navy Entomology Center of Excellence, Box 43, Naval Air Station, Jacksonville, FL 32212-0043, USA
| | - Robert K Vander Meer
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA
| | - James J Becnel
- United States Department of Agriculture, Agriculture Research Service, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW 23rd Drive, Gainesville, FL 32608, USA.
| |
Collapse
|
4
|
Choi MY, Köhler R, Vander Meer RK, Neupert S, Predel R. Identification and expression of capa gene in the fire ant, Solenopsis invicta. PLoS One 2014; 9:e94274. [PMID: 24718032 PMCID: PMC3981796 DOI: 10.1371/journal.pone.0094274] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
Recent genome analyses suggested the absence of a number of neuropeptide genes in ants. One of the apparently missing genes was the capa gene. Capa gene expression in insects is typically associated with the neuroendocrine system of abdominal ganglia; mature CAPA peptides are known to regulate diuresis and visceral muscle contraction. The apparent absence of the capa gene raised questions about possible compensation of these functions. In this study, we re-examined this controversial issue and searched for a potentially unrecognized capa gene in the fire ant, Solenopsis invicta. We employed a combination of data mining and a traditional PCR-based strategy using degenerate primers designed from conserved amino acid sequences of insect capa genes. Our findings demonstrate that ants possess and express a capa gene. As shown by MALDI-TOF mass spectrometry, processed products of the S. invicta capa gene include three CAPA periviscerokinins and low amounts of a pyrokinin which does not have the C-terminal WFGPRLa motif typical of CAPA pyrokinins in other insects. The capa gene was found with two alternative transcripts in the CNS. Within the ventral nerve cord, two capa neurons were immunostained in abdominal neuromeres 2–5, respectively, and projected into ventrally located abdominal perisympathetic organs (PSOs), which are the major hormone release sites of abdominal ganglia. The ventral location of these PSOs is a characteristic feature and was also found in another ant, Atta sexdens.
Collapse
Affiliation(s)
- Man-Yeon Choi
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
- * E-mail: (MYC); (RP)
| | - Rene Köhler
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Robert K. Vander Meer
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center of Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, Florida, United States of America
| | - Susanne Neupert
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
| | - Reinhard Predel
- Zoological Institute, Biocenter University of Cologne, Cologne, Germany
- * E-mail: (MYC); (RP)
| |
Collapse
|
5
|
Hellmich E, Nusawardani T, Bartholomay L, Jurenka R. Pyrokinin/PBAN-like peptides in the central nervous system of mosquitoes. Cell Tissue Res 2014; 356:39-47. [PMID: 24458703 DOI: 10.1007/s00441-013-1782-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
Abstract
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides is characterized by a common C-terminal pentapeptide, FXPRLamide, which is required for diverse physiological functions in various insects. Polyclonal antisera against the C-terminus was utilized to determine the location of cell bodies and axons in the central nervous systems of larval and adult mosquitoes. Immunoreactive material was detected in three groups of neurons in the subesophageal ganglion of larvae and adults. The corpora cardiaca of both larvae and adults contained immunoreactivity indicating potential release into circulation. The adult and larval brains had at least one pair of immunoreactive neurons in the protocerebrum with the adult brain having additional immunoreactive neurons in the dorsal medial part of the protocerebrum. The ventral ganglia of both larvae and adults each contained one pair of neurons that sent their axons to a perisympathetic organ associated with each abdominal ganglion. These results indicate that the mosquito nervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph. The peptides in insects and mosquitoes are produced by two genes, capa and pk/pban. Utilizing PCR protocols, we demonstrate that products of the capa gene could be produced in the abdominal ventral ganglia and the products of the pk/pban gene could be produced in the subesophageal ganglion. Two receptors for pyrokinin peptides were differentially localized to various tissues.
Collapse
Affiliation(s)
- Erica Hellmich
- Department of Entomology, Iowa State University, Ames, IA, 50011-3222, USA
| | | | | | | |
Collapse
|