1
|
Abstract
Adrenomedullin, a peptide with multiple physiological functions in nervous system injury and disease, has aroused the interest of researchers. This review summarizes the role of adrenomedullin in neuropathological disorders, including pathological pain, brain injury and nerve regeneration, and their treatment. As a newly characterized pronociceptive mediator, adrenomedullin has been shown to act as an upstream factor in the transmission of noxious information for various types of pathological pain including acute and chronic inflammatory pain, cancer pain, neuropathic pain induced by spinal nerve injury and diabetic neuropathy. Initiation of glia-neuron signaling networks in the peripheral and central nervous system by adrenomedullin is involved in the formation and maintenance of morphine tolerance. Adrenomedullin has been shown to exert a facilitated or neuroprotective effect against brain injury including hemorrhagic or ischemic stroke and traumatic brain injury. Additionally, adrenomedullin can serve as a regulator to promote nerve regeneration in pathological conditions. Therefore, adrenomedullin is an important participant in nervous system diseases.
Collapse
Affiliation(s)
- Feng-Jiao Li
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Si-Ru Zheng
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| | - Dong-Mei Wang
- College of Life Sciences, Laboratory of Neuroendocrinology, Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Gao W, Ju YN, Chen JF, Zhou Q, Song CY, Wang YZ, Cao HL, Yang WC. Adrenomedullin Reduces Secondary Injury and Improves Outcome in Rats with Fluid Percussion Brain Injury. World Neurosurg 2018; 119:e765-e773. [DOI: 10.1016/j.wneu.2018.07.265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023]
|
3
|
Adrenomedullin Promotes the Proliferation and Inhibits Apoptosis of Dental Pulp Stem Cells Involved in Divergence Pathways. J Endod 2016; 42:1347-54. [DOI: 10.1016/j.joen.2016.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 05/26/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022]
|
4
|
Wu YH, Song SY, Liu H, Xing D, Wang X, Fei Y, Li GL, Zhang C, Li Y, Zhang LC. Role of adrenomedullin in the cerebrospinal fluid-contacting nucleus in the modulation of immobilization stress. Neuropeptides 2015; 51:43-54. [PMID: 25911494 DOI: 10.1016/j.npep.2015.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 03/07/2015] [Accepted: 03/25/2015] [Indexed: 01/10/2023]
Abstract
The contribution of the cerebrospinal fluid-contacting nucleus (CSF-contacting nucleus) and adrenomedullin (ADM) to the developmental modulation of stressful events remains controversial. This study explored the effects of endogenous ADM in the CSF-contacting nucleus on immobilization of stress-induced physiological parameter disorders and glucocorticoid hormone releasing hormone (CRH), rat plasma corticosterone expression, and verification of such effects by artificially lowering ADM expression in the CSF-contacting nucleus by targeted ablation of the nucleus. Immunohistochemical experiments showed that ADM-like immunoreactivity and the calcitonin receptor-like receptor (CRLR) marker were localized in the CSF-contacting nucleus. After 7 continuous days of chronic immobilization stress (CIS), animals exhibited anxiety-like behavior. Also, an increase in serum corticosterone, and enhanced expression of ADM in the CSF-contacting nucleus were observed, following activation by CIS. The intracerebroventricular (i.c.v.) administration of the ADM receptor antagonist AM22-52 significantly reduced ADM in the CSF-contacting nucleus, additionally, blocked the effects of ADM, meaning the expression of CRH in the hypothalamic paraventricular nucleus (Pa) and serum corticosterone level were increased, and the physiological parameters of the rats became correspondingly deteriorated. Additionally, the i.c.v. administration of cholera toxin subunit B-saporin (CB-SAP), a cytotoxin coupled to a cholera toxin subunit, completely eliminated the CSF-contacting nucleus, worsening the reaction of the body to CIS. The collective results demonstrated that ADM acted as a stress-related peptide in the CSF-contacting nucleus, and its lower expression and blocked effects in the nucleus contributed to the deterioration of stress-induced physiologic parameter disorders as well as the excessive expressions of stress-related hormones which were part of the hypothalamic-pituitary-adrenal (HPA) axis.
Collapse
Affiliation(s)
- Yue-Hong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Si-Yuan Song
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - He Liu
- Xuzhou Medical College Affiliated Hospital, Xuzhou 221004, Jiangsu Province, China
| | - Dan Xing
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Xin Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Yan Fei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Guang-Ling Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Chao Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Ying Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China
| | - Li-Cai Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical College, Xuzhou 221004, Jiangsu Province, China.
| |
Collapse
|
5
|
Zhang H, Tang B, Yin CG, Chen Y, Meng QL, Jiang L, Wang WP, Niu GZ. Plasma adrenomedullin levels are associated with long-term outcomes of acute ischemic stroke. Peptides 2014; 52:44-8. [PMID: 24333654 DOI: 10.1016/j.peptides.2013.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 11/30/2022]
Abstract
Plasma adrenomedullin concentration has been found to be enhanced in ischemic stroke. Up to now, little is known about the association of plasma adrenomedullin concentration with clinical outcomes of ischemic stroke. This study recruited 138 patients with ischemic stroke and 138 healthy volunteers. Unfavorable outcome was defined as modified Rankin Scale score >2 at 3 months. Plasma adrenomedullin concentrations were determined by enzyme-linked immunosorbent assay. Plasma adrenomedullin concentrations were statistically significantly higher in patients than in healthy individuals (79.9±27.3pg/mL vs. 36.8±10.4pg/mL; P<0.001). 3-Month mortality was 20.3% (28/138) and sixty-six patients (47.8%) had unfavorable outcome in 3 months. A logistic regression analysis identified plasma adrenomedullin concentration as an independent predictor of 3-month mortality (odds ratio, 1.211; 95% confidence interval, 1.101-1.582; P=0.004) and unfavorable outcome (odds ratio, 1.193; 95% confidence interval, 1.082-1.447; P=0.006). Receiver operating characteristic curve analysis showed that plasma adrenomedullin concentration predicted 3-month mortality (area under curve, 0.806; 95% confidence interval, 0.730-0.868) and unfavorable outcome (area under curve, 0.816; 95% confidence interval, 0.742-0.877) with the high predictive value. Its predictive performance was similar to that of National Institutes of Health Stroke Scale score (P=0.694 or 0.206). Its combined use with National Institutes of Health Stroke Scale score did not improve the predictive value (P=0.236 or 0.590). Thus, adrenomedullin may aid to predict long-term clinical outcomes of patients with ischemic stroke.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Bo Tang
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Cong-Guo Yin
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Yan Chen
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Qing-Lian Meng
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Lin Jiang
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Wei-Ping Wang
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China
| | - Guo-Zhong Niu
- Department of Neurology, The First People's Hospital of Hangzhou, Nanjing Medical University, 261 Huansha Road, Hangzhou 310006, China.
| |
Collapse
|
6
|
Sun W, Liu J, Huan Y, Zhang C. Intracranial injection of recombinant stromal-derived factor-1 alpha (SDF-1α) attenuates traumatic brain injury in rats. Inflamm Res 2013; 63:287-97. [PMID: 24352531 DOI: 10.1007/s00011-013-0699-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/01/2013] [Accepted: 12/08/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study was conducted to investigate the role of stromal-derived factor-1 alpha (SDF-1α) in a secondary brain injury after traumatic brain injury (TBI) in rats, and to further elucidate its underlying regulatory mechanisms. MATERIALS AND METHODS Male Sprague-Dawley rats underwent TBI for 30 min, and then received intracranial injections of recombinant SDF-1α, SDF-1α antibody, or saline as a vehicle control. At 24 h after TBI, brain tissues from the experimental animals were subjected to histology, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA), and western blot analyses. RESULTS TBI-induced brain edema and blood-brain barrier disruption were ameliorated by post-injury injections of SDF-1α. TBI-induced neuronal degradation and apoptosis, accompanied by increased cleaved caspase-3, cleaved PARP and Bax, and decreased Bcl-2 were found to be attenuated by SDF-1α injection. Nitric oxide (NO) and inducible nitric oxide synthase (iNOS) levels decreased in SDF-1α treated animals after TBI. SDF-1α repressed inflammatory responses by inhibiting the expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6. However, neutralizing the effect of SDF-1α with its antibody abolished these therapeutic alterations in TBI animals. Importantly, SDF-1α attenuated the brain lesion by affecting the ERK and NF-κB signaling pathways after mechanical head trauma in rats. CONCLUSIONS SDF-1α ameliorates mechanical trauma-induced pathological changes via its anti-apoptotic and anti-inflammatory action in the brain.
Collapse
Affiliation(s)
- Weifeng Sun
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Shenyang, 110001, People's Republic of China
| | | | | | | |
Collapse
|