1
|
Li S, Ge F, Chen L, Liu Y, Chen Y, Ma Y. Genome-wide association analysis of body conformation traits in Chinese Holstein Cattle. BMC Genomics 2024; 25:1174. [PMID: 39627684 PMCID: PMC11616231 DOI: 10.1186/s12864-024-11090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The body conformation traits of dairy cattle are closely related to their production performance and health. The present study aimed to identify gene variants associated with body conformation traits in Chinese Holstein cattle and provide marker loci for genomic selection in dairy cattle breeding. These findings could offer robust theoretical support for optimizing the health of dairy cattle and enhancing their production performance. RESULTS This study involved 586 Chinese Holstein cattle and used the predicted transmitting abilities (PTAs) of 17 body conformation traits evaluated by the Council on Dairy Cattle Breeding in the USA as phenotypic values. These traits were categorized into body size traits, rump traits, feet/legs traits, udder traits, and dairy characteristic traits. On the basis of the genomic profiling results from the Genomic Profiler Bovine 100 K SNP chip, genotype data were quality controlled via PLINK software, and 586 individuals and 80,713 SNPs were retained for further analysis. Genome-wide association studies (GWASs) were conducted via GEMMA software, which employs both univariate linear mixed models (LMMs) and multivariate linear mixed models (mvLMMs). The Bonferroni method was used to determine the significance threshold, identifying gene variants significantly associated with body conformation traits in Chinese Holstein cattle. The single-trait GWAS identified 24 SNPs significantly associated with body conformation traits (P < 0.01), with annotation leading to the identification of 21 candidate genes. The multi-trait GWAS identified 54 SNPs, which were annotated to 57 candidate genes, including 39 new SNPs not identified in the single-trait GWAS. Additionally, 14 SNPs in the 86.84-87.41 Mb region of chromosome 6 were significantly associated with multiple traits, such as body size, udder, and dairy characteristics. Four genes-SLC4A4, GC, NPFFR2, and ADAMTS3-were annotated in this region. CONCLUSIONS A total of 63 SNPs were identified as significantly associated with 17 body conformation traits in Chinese Holstein cattle through both single-trait and multi-trait GWAS analyses. Sixty-six candidate genes were annotated, with 12 genes identified by both methods, such as SLC4A4, GC, NPFFR2, and ADAMTS3, which are involved in pathways such as growth hormone synthesis and secretion, sphingolipid signaling, and dopaminergic synapse pathways. These findings provide potential genetic marker information related to body conformation traits for the breeding of Chinese Holstein cattle.
Collapse
Affiliation(s)
- Shuangshuang Li
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Fei Ge
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Lili Chen
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yuxin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Yan Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China.
| | - Yi Ma
- Tianjin Key Laboratory of Animal Molecular Breeding and Biotechnology, Tianjin Engineering Research Center of Animal Healthy Farming, Institute of Animal Science and Veterinary, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China.
| |
Collapse
|
2
|
Wang Y, Zuo Z, Shi J, Fang Y, Yin Z, Wang Z, Yang Z, Jia B, Sun Y. Modulatory role of neuropeptide FF system in macrophages. Peptides 2024; 174:171164. [PMID: 38272240 DOI: 10.1016/j.peptides.2024.171164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024]
Abstract
Neuropeptide FF (NPFF) is an octapeptide that regulates various cellular processes, especially pain perception. Recently, there has been a growing interest in understanding the modulation of NPFF in neuroendocrine inflammation. This review aims to provide a thorough overview of the regulation of NPFF in macrophage-mediated biological processes. We delve into the impact of NPFF on macrophage polarization, self-renewal modulation, and the promotion of mitophagy, facilitating the transition from thermogenic fat to fat-storing adipose tissue. Additionally, we explore the NPFF-dependent regulation of the inflammatory response mediated by macrophages, its impact on the differentiation of macrophages, and its capacity to induce alterations in the transcriptome of macrophages. We also address the potential of NPFF as a therapeutic molecule in the field of neuroendocrine inflammation. Overall, our work offers an understanding of the influence of NPFF on macrophage, facilitating the exploration of its pharmacological significance in future studies.
Collapse
Affiliation(s)
- Yaxing Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhuo Zuo
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Jiajia Shi
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yanwei Fang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhongqian Yin
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhe Wang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Zhouqi Yang
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Bin Jia
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China
| | - Yulong Sun
- School of Life Sciences, Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
3
|
Gour N, Yong HM, Magesh A, Atakkatan A, Andrade F, Lajoie S, Dong X. A GPCR-neuropeptide axis dampens hyperactive neutrophils by promoting an alternative-like polarization during bacterial infection. Immunity 2024; 57:333-348.e6. [PMID: 38295799 PMCID: PMC10940224 DOI: 10.1016/j.immuni.2024.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 02/16/2024]
Abstract
The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.
Collapse
Affiliation(s)
- Naina Gour
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Magesh
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Aishwarya Atakkatan
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Felipe Andrade
- Division of Rheumatology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Stephane Lajoie
- Department of Otolaryngology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Neuropeptide FF-related gene in fish (Larimichthys polyactis): identification, characterization, and potential anti-inflammatory function. Mol Biol Rep 2022; 49:6385-6394. [PMID: 35503491 DOI: 10.1007/s11033-022-07447-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Neuropeptide FF (NPFF), an octapeptide of the RFamide-related peptides (FaRPs), is involved in regulatory function in various biological processes. The regulatory role of NPFF in the immune and inflammatory response was currently being revealed. METHODS Neuropeptide FF-related gene (termed LpNPFF) and its two receptors, NPFF receptor 1 (LpNPFFR1) and NPFF receptor 2 (LpNPFFR2) were identified by PCR and Semi-quantitative RT-PCR assay. Effect of LpNPFF on the production of nitric oxide (NO) in macrophage RAW264.7 cell was divided into PBS group, lipopolysaccharide (LPS) group, LPS treated with LpNPFF group, and LPS treated with LpNPFF and receptor antagonist RF9 group. Then specimens were measured by color reaction at 570 nm absorbance value. RESULTS Sequence analysis showed that LpNPFF cDNA consists of 835 nucleotides with a 5'- untranslated region (UTR) of 150 base pair (bp), an open reading frame (ORF) of 384 bp and a 3'-UTR of 300 bp (Accession No. MT012894). The ORF encodes 127 amino acid (aa) residues with a hydrophobic signal peptide at N-terminus and two presumptive peptides with -PQRFa structure, LpNPFF (1) and LpNPFF (2). LpNPFFR1 and LpNPFFR2 encode 427 and 444 aa residues respectively, which both have seven hydrophobic TMDs and identified as G protein coupled receptors (GPCRs). Results of tissue distribution showed that LpNPFF and receptors were highly expressed in the brain and gonad. Furtherly, in vitro assay found LpNPFF could inhibit NO production in RAW 264.7 macrophages under inflammatory stress with LPS, while its receptor antagonist RF9 caused the evoke of NO generation. CONCLUSIONS These results contribute to the further study of neuropeptide evolution in marine organisms, and also provide a new research idea for exploring the related functions of NPFF gene.
Collapse
|
5
|
Yu Z, Lin YT, Chen JC. Knockout of NPFFR2 Prevents LPS-Induced Depressive-Like Responses in Mice. Int J Mol Sci 2021; 22:ijms22147611. [PMID: 34299230 PMCID: PMC8306864 DOI: 10.3390/ijms22147611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
The precise neural mechanisms underlying the pathogenesis of depression are largely unknown, though stress-induced brain inflammation and serotonergic plasticity are thought to be centrally involved. Moreover, we previously demonstrated that neuropeptide FF receptor 2 (NPFFR2) overexpression provokes depressive-like behaviors in mice. Here, we assess whether NPFFR2 is involved in priming of depressive-like behaviors and downregulation of serotonergic 1A receptor (5HT1AR) after lipopolysaccharide (LPS) treatment. The forced swimming test (FST) and sucrose preference test (SPT) were used to quantify depressive-like phenotypes in wild-type (WT) and NPFFR2-knockout (KO) mice. A single dose of LPS (i.p. 1 mg/kg) readily caused increases in toll-like receptor 4 and tumor necrosis factor-α along with decreases in 5-HT1AR mRNA in the ventral hippocampus of WT mice. Furthermore, LPS treatment of WT mice increased immobility time in FST and decreased sucrose preference in SPT. In contrast, none of these effects were observed in NPFFR2-KO mice. While WT mice injected with lentiviral 5-HT1AR shRNA in the ventral hippocampus displayed an unaltered response after LPS challenge, LPS-challenged NPFFR2-KO mice displayed a profound decrease in sucrose preference when pretreated with 5-HT1AR shRNA. Taken together, these results suggest that NPFFR2 modulates LPS-induced depressive-like behavioral phenotypes by downregulating 5HT1AR in the ventral hippocampus.
Collapse
MESH Headings
- Animals
- Behavior, Animal/physiology
- Depression/genetics
- Depression/metabolism
- Disease Models, Animal
- Female
- Hippocampus/metabolism
- Lipopolysaccharides/adverse effects
- Lipopolysaccharides/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Toll-Like Receptor 4/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Zachary Yu
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ya-Tin Lin
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Jin-Chung Chen
- Department of Physiology and Pharmacology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-2118800; Fax: +886-3-2118700
| |
Collapse
|
6
|
Transcriptomic Changes in Mouse Bone Marrow-Derived Macrophages Exposed to Neuropeptide FF. Genes (Basel) 2021; 12:genes12050705. [PMID: 34065092 PMCID: PMC8151073 DOI: 10.3390/genes12050705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/27/2022] Open
Abstract
Neuropeptide FF (NPFF) is a neuropeptide that regulates various biological activities. Currently, the regulation of NPFF on the immune system is an emerging field. However, the influence of NPFF on the transcriptome of primary macrophages has not been fully elucidated. In this study, the effect of NPFF on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) was explored by RNA sequencing, bioinformatics, and molecular simulation. BMDMs were treated with 1 nM NPFF for 18 h, followed by RNA sequencing. Differentially expressed genes (DEGs) were obtained, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-validated DEGs were selected as hub genes. Subsequently, the three-dimensional (3-D) structures of the eight hub proteins were constructed by Modeller and Rosetta. Next, the molecular dynamics (MD)-optimized 3-D structure of hub protein was acquired with Gromacs. Finally, the binding modes between NPFF and hub proteins were studied by Rosetta. A total of 2655 DEGs were obtained (up-regulated 1442 vs. down-regulated 1213), and enrichment analysis showed that NPFF extensively regulates multiple functional pathways mediated by BMDMs. Moreover, the 3-D structure of the hub protein was obtained after MD-optimization. Finally, the docking modes of NPFF-hub proteins were predicted. Besides, NPFFR2 was expressed on the cell membrane of BMDMs, and NPFF 1 nM significantly activated NPFFR2 protein expression. In summary, instead of significantly inhibiting the expression of the immune-related gene transcriptome of RAW 264.7 cells, NPFF simultaneously up-regulated and down-regulated the gene expression profile of a large number of BMDMs, hinting that NPFF may profoundly affect a variety of cellular processes dominated by BMDMs. Our work provides transcriptomics clues for exploring the influence of NPFF on the physiological functions of BMDMs.
Collapse
|
7
|
Sun Y, Zuo Z, Kuang Y. Prolactin-Releasing Peptide Differentially Regulates Gene Transcriptomic Profiles in Mouse Bone Marrow-Derived Macrophages. Int J Mol Sci 2021; 22:ijms22094456. [PMID: 33923285 PMCID: PMC8123224 DOI: 10.3390/ijms22094456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/24/2023] Open
Abstract
Prolactin-releasing Peptide (PrRP) is a neuropeptide whose receptor is GPR10. Recently, the regulatory role of PrRP in the neuroendocrine field has attracted increasing attention. However, the influence of PrRP on macrophages, the critical housekeeper in the neuroendocrine field, has not yet been fully elucidated. Here, we investigated the effect of PrRP on the transcriptome of mouse bone marrow-derived macrophages (BMDMs) with RNA sequencing, bioinformatics, and molecular simulation. BMDMs were exposed to PrRP (18 h) and were subjected to RNA sequencing. Differentially expressed genes (DEGs) were acquired, followed by GO, KEGG, and PPI analysis. Eight qPCR-validated DEGs were chosen as hub genes. Next, the three-dimensional structures of the proteins encoded by these hub genes were modeled by Rosetta and Modeller, followed by molecular dynamics simulation by the Gromacs program. Finally, the binding modes between PrRP and hub proteins were investigated with the Rosetta program. PrRP showed no noticeable effect on the morphology of macrophages. A total of 410 DEGs were acquired, and PrRP regulated multiple BMDM-mediated functional pathways. Besides, the possible docking modes between PrRP and hub proteins were investigated. Moreover, GPR10 was expressed on the cell membrane of BMDMs, which increased after PrRP exposure. Collectively, PrRP significantly changed the transcriptome profile of BMDMs, implying that PrRP may be involved in various physiological activities mastered by macrophages.
Collapse
Affiliation(s)
- Yulong Sun
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Z.); (Y.K.)
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
- Correspondence: ; Tel.: +86-29-8846-0332
| | - Zhuo Zuo
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Z.); (Y.K.)
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yuanyuan Kuang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (Z.Z.); (Y.K.)
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
8
|
Sun Y, Kuang Y, Zuo Z, Zhang J, Ma X, Xing X, Liu L, Miao Y, Ren T, Li H, Mei Q. Cellular processes involved in RAW 264.7 macrophages exposed to NPFF: A transcriptional study. Peptides 2021; 136:170469. [PMID: 33309723 DOI: 10.1016/j.peptides.2020.170469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022]
Abstract
Neuropeptide FF (NPFF) is a neuropeptide that modulates various physiological processes. The regulatory role of NPFF in the immune and inflammatory response is currently being revealed. However, the effect of NPFF at the transcriptome level in macrophages has not been fully elucidated. Here, the impact of NPFF on gene expression at the transcriptome level of RAW 264.7 cells was investigated by RNA-seq. RAW 264.7 macrophages were treated with NPFF (1 nM) for 18 h, followed by RNA-seq examination. Differentially expressed genes (DEGs) were acquired, followed by GO, KEGG, and PPI analysis. A total of eight qPCR-verified DEGs were obtained. Next, three-dimensional models of the eight hub proteins were constructed by using homology modeling with Modeller (9v23). Finally, molecular dynamics simulation (300 ns) was performed with GROMACS 2018.2 to investigate the structural characteristics of these hub proteins. NPFF had no detectable effect on the morphology of RAW264.7 cells. A total of 211 DEGs were acquired, and an enrichment study demonstrated that the immune response-related pathway was significantly inhibited by NPFF. Moreover, the molecular dynamics optimized-protein models of the hub proteins were obtained. Collectively, NPFF inhibited the expression of immune-related genes in RAW 264.7 cells at the transcriptome level, which suggested a negative relationship between NPFF and this set of immune-related genes in RAW 264.7 macrophages. Therefore, our data may provide direct evidence of the role of NPFF in peripheral or central inflammatory diseases.
Collapse
Affiliation(s)
- Yulong Sun
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China.
| | - Yuanyuan Kuang
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Zhuo Zuo
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Jin Zhang
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi Province, 710049, China
| | - Xiaolong Ma
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Xiaoyu Xing
- School of Humanities, Economics and Laws, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Lingyi Liu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Yuchen Miao
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Tao Ren
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| | - Hui Li
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, South Door Slightly Friendship Road 555, Xi'an, Shaanxi Province, 710054, China
| | - Qibing Mei
- Key Laboratory for Space Biosciences & Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi Province, 710072, China
| |
Collapse
|
9
|
Chen J, Huang S, Zhang J, Li J, Wang Y. Characterization of the neuropeptide FF (NPFF) gene in chickens: evidence for a single bioactive NPAF peptide encoded by the NPFF gene in birds. Domest Anim Endocrinol 2020; 72:106435. [PMID: 32247990 DOI: 10.1016/j.domaniend.2020.106435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/09/2019] [Accepted: 01/03/2020] [Indexed: 01/06/2023]
Abstract
The 2 structurally related peptides, neuropeptide FF (NPFF) and neuropeptide AF (NPAF), are encoded by the NPFF gene and have been identified as neuromodulators that regulate nociception and opiate-mediated analgesia via NPFF receptor (NPFFR2) in mammals. However, little is known about these 2 peptides in birds. In this study, we examined the structure, tissue expression profile, and functionality of NPAF and NPFF in chickens. Our results showed that: 1) unlike mammalian NPFF, NPFF from chicken and other avian species is predicted to produce a single bioactive NPAF peptide, whereas the putative avian NPFF peptide likely lacks activity due to the absence of functional RFamide motif at its C-terminus; 2) synthetic chicken (c-) NPAF can potently activate cNPFFR2 (and not cNPFFR1) expressed in HEK293 cells, as monitored by 3 cell-based luciferase reporter systems, indicating that cNPAF is a potent ligand for cNPFFR2, which activation could decrease intracellular cAMP levels and stimulate the MAPK/ERK signaling cascade; interestingly, gonadotropin-inhibitory hormone, a peptide sharing high structural similarity to NPAF, could specifically activate cNPFFR1 (but not cNPFFR2); 3) Quantitative real-time PCR revealed that cNPFF mRNA is widely expressed in chicken tissues with the highest level detected in the hypothalamus, whereas cNPFFR2 is expressed in all tissues examined with the highest level noted in the hypothalamus and anterior pituitary. Taken together, our data reveal that avian NPFF encodes a single bioactive NPAF peptide, which preferentially activates NPFFR2, and provides insights into potential structural and functional changes of NPFF-derived peptides during vertebrate evolution.
Collapse
Affiliation(s)
- J Chen
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - S Huang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Zhang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - J Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| | - Y Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Hassnain Waqas SF, Noble A, Hoang AC, Ampem G, Popp M, Strauß S, Guille M, Röszer T. Adipose tissue macrophages develop from bone marrow-independent progenitors in Xenopus laevis and mouse. J Leukoc Biol 2017; 102:845-855. [PMID: 28642277 PMCID: PMC5574031 DOI: 10.1189/jlb.1a0317-082rr] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/14/2022] Open
Abstract
ATMs have a metabolic impact in mammals as they contribute to metabolically harmful AT inflammation. The control of the ATM number may have therapeutic potential; however, information on ATM ontogeny is scarce. Whereas it is thought that ATMs develop from circulating monocytes, various tissue-resident Mϕs are capable of self-renewal and develop from BM-independent progenitors without a monocyte intermediate. Here, we show that amphibian AT contains self-renewing ATMs that populate the AT before the establishment of BM hematopoiesis. Xenopus ATMs develop from progenitors of aVBI. In the mouse, a significant amount of ATM develops from the yolk sac, the mammalian equivalent of aVBI. In summary, this study provides evidence for a prenatal origin of ATMs and shows that the study of amphibian ATMs can enhance the understanding of the role of the prenatal environment in ATM development.
Collapse
Affiliation(s)
| | - Anna Noble
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Anh C Hoang
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Grace Ampem
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Manuela Popp
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Sarah Strauß
- Ambystoma Mexicanum Bioregeneration Center, Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Medizinische Hochschule Hannover, Hannover, Germany
| | - Matthew Guille
- European Xenopus Resource Centre, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Tamás Röszer
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany;
| |
Collapse
|
11
|
Waqas SFH, Hoang AC, Lin YT, Ampem G, Azegrouz H, Balogh L, Thuróczy J, Chen JC, Gerling IC, Nam S, Lim JS, Martinez-Ibañez J, Real JT, Paschke S, Quillet R, Ayachi S, Simonin F, Schneider EM, Brinkman JA, Lamming DW, Seroogy CM, Röszer T. Neuropeptide FF increases M2 activation and self-renewal of adipose tissue macrophages. J Clin Invest 2017; 127:2842-2854. [PMID: 28581443 DOI: 10.1172/jci90152] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/06/2017] [Indexed: 12/30/2022] Open
Abstract
The quantity and activation state of adipose tissue macrophages (ATMs) impact the development of obesity-induced metabolic diseases. Appetite-controlling hormones play key roles in obesity; however, our understanding of their effects on ATMs is limited. Here, we have shown that human and mouse ATMs express NPFFR2, a receptor for the appetite-reducing neuropeptide FF (NPFF), and that NPFFR2 expression is upregulated by IL-4, an M2-polarizing cytokine. Plasma levels of NPFF decreased in obese patients and high-fat diet-fed mice and increased following caloric restriction. NPFF promoted M2 activation and increased the proliferation of murine and human ATMs. Both M2 activation and increased ATM proliferation were abolished in NPFFR2-deficient ATMs. Mechanistically, the effects of NPFF involved the suppression of E3 ubiquitin ligase RNF128 expression, resulting in enhanced stability of phosphorylated STAT6 and increased transcription of the M2 macrophage-associated genes IL-4 receptor α (Il4ra), arginase 1 (Arg1), IL-10 (Il10), and alkylglycerol monooxygenase (Agmo). NPFF induced ATM proliferation concomitantly with the increase in N-Myc downstream-regulated gene 2 (Ndrg2) expression and suppressed the transcription of Ifi200 cell-cycle inhibitor family members and MAF bZIP transcription factor B (Mafb), a negative regulator of macrophage proliferation. NPFF thus plays an important role in supporting healthy adipose tissue via the maintenance of metabolically beneficial ATMs.
Collapse
Affiliation(s)
| | - Anh Cuong Hoang
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Ya-Tin Lin
- Department of Physiology and Pharmacology and Graduate Institute of Biomedical Sciences, Chang Gung University; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Grace Ampem
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Hind Azegrouz
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lajos Balogh
- National Research Institute for Radiobiology and Radiohygiene, Budapest, Hungary
| | | | - Jin-Chung Chen
- Department of Physiology and Pharmacology and Graduate Institute of Biomedical Sciences, Chang Gung University; Neuroscience Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ivan C Gerling
- Department of Medicine, University of Tennessee, Memphis, Tennessee, USA
| | - Sorim Nam
- Department of Biological Science, Sookmyung Women's University, Seoul, South Korea
| | - Jong-Seok Lim
- Department of Biological Science, Sookmyung Women's University, Seoul, South Korea
| | - Juncal Martinez-Ibañez
- Department of Medicine, Hospital Clínico Universitario de València, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Valencia, Spain
| | - José T Real
- Department of Medicine, Hospital Clínico Universitario de València, Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Valencia, Spain
| | - Stephan Paschke
- Department of General and Visceral Surgery, University Hospital Ulm, Ulm, Germany
| | - Raphaëlle Quillet
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France
| | - Safia Ayachi
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- Biotechnologie et Signalisation Cellulaire, UMR 7242, Centre National de Recherche Scientifique (CNRS), Université de Strasbourg, Illkirch, France
| | - E Marion Schneider
- Division of Experimental Anesthesiology, University Hospital Ulm, Ulm, Germany
| | - Jacqueline A Brinkman
- University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Dudley W Lamming
- University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Christine M Seroogy
- University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tamás Röszer
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| |
Collapse
|
12
|
Nam SY, Kim HM, Jeong HJ. Anti-fatigue effect by active dipeptides of fermented porcine placenta through inhibiting the inflammatory and oxidative reactions. Biomed Pharmacother 2016; 84:51-59. [PMID: 27636512 DOI: 10.1016/j.biopha.2016.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/26/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Recently, we reported an anti-fatigue effect of fermented porcine placenta (FPP). Glycine-leucine (GL) and leucine-glycine (LG) dipeptides are main peptides of FPP. However, the therapeutic effects and underlying mechanisms of GL and LG dipeptides on fatigue are still unclear. METHODS Herein, we examined the anti-fatigue properties of GL and LG dipeptides using RAW264.7 macrophages and forced swimming test (FST) animal model. RESULTS Our data revealed that lipopolysaccharide (LPS)-induced interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 productions were markedly inhibited by GL or LG in RAW264.7 macrophages without inducing cytotoxicity. LPS-enhanced nitric oxide (NO) production and inducible nitric oxide synthase expression were inhibited by GL or LG, whereas superoxide dismutase (SOD) activities were significantly enhanced by GL or LG in LPS-stimulated RAW264.7 macrophages. The present study also figured out that these effects of GL and LG were mediated by blockade of caspase-1 and nuclear factor-κB activation. In FST-induced fatigue mouse model, the mice which received the GL or LG for 21days showed significant decreases of IL-1β, IL-6, and NO serum levels. Treatment with GL or LG significantly enhanced levels of SOD and glycogen and significantly lowered levels of lactate dehydrogenase, aspartate transaminase, and alanine transaminase. CONCLUSION Taken together, our results indicated that GL and LG dipeptides, active components of FPP, should be considered as candidate of anti-fatigue agents.
Collapse
Affiliation(s)
- Sun-Young Nam
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyung-Min Kim
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hyun-Ja Jeong
- Department of Food Technology and Inflammatory Disease Research Center, Hoseo University, Asan, Chungnam, 31499, Republic of Korea.
| |
Collapse
|
13
|
Buffel I, Meurs A, Portelli J, Raedt R, De Herdt V, Poppe L, De Meulenaere V, Wadman W, Bihel F, Schmitt M, Vonck K, Bourguignon JJ, Simonin F, Smolders I, Boon P. The effect of neuropeptide FF in the amygdala kindling model. Acta Neurol Scand 2016; 134:181-8. [PMID: 26503695 DOI: 10.1111/ane.12526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Neuropeptide FF (NPFF) and its receptors (NPFF1 R and NPFF2 R) are differentially distributed throughout the central nervous system. NPFF reduces cortical excitability in rats when administered intracerebroventricularly (i.c.v.), and both NPFF and NPFF1 R antagonists attenuate pilocarpine-induced limbic seizures. In this study, our aim was to determine whether NPFF exerts anticonvulsant or anti-epileptogenic effects in the rat amygdala kindling model for temporal lobe seizures. METHODS Male Wistar rats were implanted with a recording/stimulation electrode in the right amygdala and a cannula in the left lateral ventricle. In a first group of animals, the afterdischarge threshold (ADT) was determined after a single i.c.v. infusion of saline (n = 8) or NPFF (1 nmol/h for 2 h; n = 10). Subsequently, daily infusion of saline (n = 8) or NPFF (1 nmol/h for 2 h; i.c.v.; n = 9) was performed, followed by a kindling stimulus (ADT+200 μA). Afterdischarge duration and seizure severity were evaluated after every kindling stimulus. A second group of rats (n = 7) were fully kindled, and the effect of saline or a high dose of NPFF (10 nmol/h for 2 h, i.c.v.) on ADT and the generalized seizure threshold (GST) was subsequently determined. RESULTS In naive rats, NPFF significantly increased the ADT compared to control (435 ± 72 μA vs 131 ± 23 μA [P < 0.05]). When rats underwent daily stimulations above the ADT, NPFF did not delay or prevent kindling acquisition. Furthermore, a high dose of NPFF did not alter ADT or GST in fully kindled rats. CONCLUSIONS I.c.v. administration of NPFF reduced excitability in the amygdala in naive, but not in fully kindled rats, and had no effect on kindling acquisition.
Collapse
Affiliation(s)
- I. Buffel
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - A. Meurs
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - J. Portelli
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
- Center for Neurosciences; Department of Pharmaceutical Chemistry; Drug Analysis & Drug information; University of Brussels; Brussels Belgium
| | - R. Raedt
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - V. De Herdt
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - L. Poppe
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - V. De Meulenaere
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - W. Wadman
- Swammerdam Institute of Life Sciences; Department of Neurobiology; University of Amsterdam; Amsterdam The Netherlands
| | - F. Bihel
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - M. Schmitt
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - K. Vonck
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| | - J.-J. Bourguignon
- Therapeuthic Innovation Laboratory; Faculty of Pharmacy; UMR 7200; CNRS; University of Strasbourg; Illkirch Graffenstaden France
| | - F. Simonin
- Research Institute of ESBS; CNRS; UMR7242; University of Strasbourg; Illkirch France
| | - I. Smolders
- Center for Neurosciences; Department of Pharmaceutical Chemistry; Drug Analysis & Drug information; University of Brussels; Brussels Belgium
| | - P. Boon
- Laboratory for Clinical and Experimental Neurophysiology; Neurobiology and Neuropsychology; Department of Neurology; Ghent University; Ghent University Hospital; Ghent Belgium
| |
Collapse
|
14
|
Chronic activation of NPFFR2 stimulates the stress-related depressive behaviors through HPA axis modulation. Psychoneuroendocrinology 2016; 71:73-85. [PMID: 27243477 DOI: 10.1016/j.psyneuen.2016.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/11/2016] [Accepted: 05/13/2016] [Indexed: 01/16/2023]
Abstract
Neuropeptide FF (NPFF) is a morphine-modulating peptide that regulates the analgesic effect of opioids, and also controls food consumption and cardiovascular function through its interaction with two cognate receptors, NPFFR1 and NPFFR2. In the present study, we explore a novel modulatory role for NPFF-NPFFR2 in stress-related depressive behaviors. In a mouse model of chronic mild stress (CMS)-induced depression, the expression of NPFF significantly increased in the hypothalamus, hippocampus, medial prefrontal cortex (mPFC) and amygdala. In addition, transgenic (Tg) mice over-expressing NPFFR2 displayed clear depression and anxiety-like behaviors with hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis, reduced expression of glucocorticoid receptor (GR) and neurogenesis in the hippocampus. Furthermore, acute treatment of NPFFR2 agonists in wild-type (WT) mice enhanced the activity of the HPA axis, and chronic administration resulted in depressive and anxiety-like behaviors. Chronic stimulation of NPFFR2 also decreased the expression of hippocampal GR and led to persistent activation of the HPA axis. Strikingly, bilateral intra-paraventricular nucleus (PVN) injection of NPFFR2 shRNA predominately inhibits the depressive-like behavior in CMS-exposed mice. Antidepressants, fluoxetine and ketamine, effectively relieved the depressive behaviors of NPFFR2-Tg mice. We speculate that persistent NPFFR2 activation, in particular in the hypothalamus, up-regulates the HPA axis and results in long-lasting increases in circulating corticosterone (CORT), consequently damaging hippocampal function. This novel role of NPFFR2 in regulating the HPA axis and hippocampal function provides a new avenue for combating depression and anxiety-like disorder.
Collapse
|
15
|
Wu X, Lund MS, Sahana G, Guldbrandtsen B, Sun D, Zhang Q, Su G. Association analysis for udder health based on SNP-panel and sequence data in Danish Holsteins. Genet Sel Evol 2015; 47:50. [PMID: 26087655 PMCID: PMC4472403 DOI: 10.1186/s12711-015-0129-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 05/21/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The sensitivity of genome-wide association studies for the detection of quantitative trait loci (QTL) depends on the density of markers examined and the statistical models used. This study compares the performance of three marker densities to refine six previously detected QTL regions for mastitis traits: 54 k markers of a medium-density SNP (single nucleotide polymorphism) chip (MD), imputed 777 k markers of a high-density SNP chip (HD), and imputed whole-genome sequencing data (SEQ). Each dataset contained data for 4496 Danish Holstein cattle. Comparisons were performed using a linear mixed model (LM) and a Bayesian variable selection model (BVS). RESULTS After quality control, 587, 7825, and 78 856 SNPs in the six targeted regions remained for MD, HD, and SEQ data, respectively. In general, the association patterns between SNPs and traits were similar for the three marker densities when tested using the same statistical model. With the LM model, 120 (MD), 967 (HD), and 7209 (SEQ) SNPs were significantly associated with mastitis, whereas with the BVS model, 43 (MD), 131 (HD), and 1052 (SEQ) significant SNPs (Bayes factor > 3.2) were observed. A total of 26 (MD), 75 (HD), and 465 (SEQ) significant SNPs were identified by both models. In addition, one, 16, and 33 QTL peaks for MD, HD, and SEQ data were detected according to the QTL intensity profile of SNP bins by post-analysis of the BVS model. CONCLUSIONS The power to detect significant associations increased with increasing marker density. The BVS model resulted in clearer boundaries between linked QTL than the LM model. Using SEQ data, the six targeted regions were refined to 33 candidate QTL regions for udder health. The comparison between these candidate QTL regions and known genes suggested that NPFFR2, SLC4A4, DCK, LIFR, and EDN3 may be considered as candidate genes for mastitis susceptibility.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark. .,Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Mogens S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Goutam Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| | - Dongxiao Sun
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Qin Zhang
- Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Guosheng Su
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, DK-8830, Tjele, Denmark.
| |
Collapse
|
16
|
Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms. Mediators Inflamm 2015; 2015:816460. [PMID: 26089604 PMCID: PMC4452191 DOI: 10.1155/2015/816460] [Citation(s) in RCA: 1235] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 11/17/2022] Open
Abstract
The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed.
Collapse
|
17
|
Buffel I, Meurs A, Portelli J, Raedt R, De Herdt V, Sioncke L, Wadman W, Bihel F, Schmitt M, Vonck K, Bourguignon JJ, Simonin F, Smolders I, Boon P. Neuropeptide FF and prolactin-releasing peptide decrease cortical excitability through activation of NPFF receptors. Epilepsia 2015; 56:489-98. [PMID: 25684325 DOI: 10.1111/epi.12928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2014] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Drugs with a novel mechanism of action are needed to reduce the number of people with epilepsy that are refractory to treatment. Increasing attention is paid to neuropeptide systems and several anticonvulsant neuropeptides have already been described, such as galanin, ghrelin, and neuropeptide Y (NPY). Many others, however, have not been investigated for their ability to affect epileptic seizures. In this study, the potential anticonvulsant activities of three members of the RF-amide neuropeptide family, neuropeptide FF (NPFF), prolactin-releasing peptide (PrRP), and kisspeptin (Kp) and other receptor ligands (NPFF1/2 R, GPR10, and GRP54, respectively) were tested in the motor cortex stimulation model. METHODS A train of pulses with increasing intensity (0-10 mA over 150 s, 50 Hz, pulse width 2 msec) was delivered to the motor cortex of rats. The threshold intensity for eliciting a motor response (i.e., motor threshold) was determined through behavioral observation and used as a measure for cortical excitability. The threshold was determined before, during, and after the intracerebroventricular (i.c.v.) administration of various NPFF1/2 R, GPR10, and GPR54 receptor ligands. RESULTS NPFF and PrRP significantly increased the motor threshold by a maximum of 143 ± 27 and 83 ± 13 μA, respectively, for the doses of 1 nmol/h (p < 0.05). The increase of motor threshold by NPFF and PrRP was prevented by pretreatment and co-treatment with the NPFF1/2 R antagonist RF9. Pretreatment with a selective NPFF1 R antagonist also prevented the threshold increase induced by NPFF. Kp did not increase motor threshold. SIGNIFICANCE Intracerebroventricular infusion of NPFF or PrRP decreases cortical excitability in rats through activation of NPFFRs. Furthermore, the NPFF1 R is required for the NPFF-induced decrease in cortical excitability.
Collapse
Affiliation(s)
- Ine Buffel
- Laboratory for Clinical and Experimental Neurophysiology, Neurobiology and Neuropsychology, Department of Neurology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Sun Y, Chen X, Chen Z, Ma X, Li D, Shang P, Qian A. Neuropeptide FF attenuates RANKL-induced differentiation of macrophage-like cells into osteoclast-like cells. Arch Oral Biol 2015; 60:282-92. [DOI: 10.1016/j.archoralbio.2014.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/28/2014] [Accepted: 11/08/2014] [Indexed: 01/31/2023]
|
19
|
Sun YL, Chen ZH, Chen XH, Yin C, Li DJ, Ma XL, Zhao F, Zhang G, Shang P, Qian AR. Diamagnetic levitation promotes osteoclast differentiation from RAW264.7 cells. IEEE Trans Biomed Eng 2014; 62:900-8. [PMID: 25398175 DOI: 10.1109/tbme.2014.2370039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The superconducting magnet with a high magnetic force field can levitate diamagnetic materials. In this study, a specially designed superconducting magnet with large gradient high magnetic field (LGHMF), which provides three apparent gravity levels (μg, 1 g, and 2 g), was used to study its influence on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation from preosteoclast cell line RAW264.7. The effects of LGHMF on the viability, nitric oxide (NO) production, morphology in RAW264.7 cells were detected by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, the Griess method, and the immunofluorescence staining, respectively. The changes induced by LGHMF in osteoclast formation, mRNA expression, and bone resorption were determined by tartrate-resistant acid phosphatase staining, semiquantity PCR, and bone resorption test, respectively. The results showed that: 1) LGHMF had no lethal effect on osteoclast precursors but attenuated NO release in RAW264.7 cells. 2) Diamagnetic levitation (μg) enhanced both the formation and bone resorption capacity of osteoclast. Moreover, diamagnetic levitation up-regulated mRNA expression of RANK, Cathepsin K, MMP-9, and NFATc1, while down-regulated RunX2 in comparison with controls. Furthermore, diamagnetic levitation induced obvious morphological alterations in osteoclast, including active cytoplasmic peripheral pseudopodial expansion, formation of pedosome belt, and aggregation of actin ring. 3) Magnetic field produced by LGHMF attenuated osteoclast resorption activity. Collectively, LGHMF with combined effects has multiple effects on osteoclast, which attenuated osteoclast resorption with magnetic field, whereas promoted osteoclast differentiation with diamagnetic levitation. Therefore, these findings indicate that diamagnetic levitation could be used as a novel ground-based microgravity simulator, which facilitates bone cell research of weightlessness condition.
Collapse
|
20
|
Sahana G, Guldbrandtsen B, Thomsen B, Holm LE, Panitz F, Brøndum RF, Bendixen C, Lund MS. Genome-wide association study using high-density single nucleotide polymorphism arrays and whole-genome sequences for clinical mastitis traits in dairy cattle. J Dairy Sci 2014; 97:7258-75. [PMID: 25151887 DOI: 10.3168/jds.2014-8141] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
Mastitis is a mammary disease that frequently affects dairy cattle. Despite considerable research on the development of effective prevention and treatment strategies, mastitis continues to be a significant issue in bovine veterinary medicine. To identify major genes that affect mastitis in dairy cattle, 6 chromosomal regions on Bos taurus autosome (BTA) 6, 13, 16, 19, and 20 were selected from a genome scan for 9 mastitis phenotypes using imputed high-density single nucleotide polymorphism arrays. Association analyses using sequence-level variants for the 6 targeted regions were carried out to map causal variants using whole-genome sequence data from 3 breeds. The quantitative trait loci (QTL) discovery population comprised 4,992 progeny-tested Holstein bulls, and QTL were confirmed in 4,442 Nordic Red and 1,126 Jersey cattle. The targeted regions were imputed to the sequence level. The highest association signal for clinical mastitis was observed on BTA 6 at 88.97 Mb in Holstein cattle and was confirmed in Nordic Red cattle. The peak association region on BTA 6 contained 2 genes: vitamin D-binding protein precursor (GC) and neuropeptide FF receptor 2 (NPFFR2), which, based on known biological functions, are good candidates for affecting mastitis. However, strong linkage disequilibrium in this region prevented conclusive determination of the causal gene. A different QTL on BTA 6 located at 88.32 Mb in Holstein cattle affected mastitis. In addition, QTL on BTA 13 and 19 were confirmed to segregate in Nordic Red cattle and QTL on BTA 16 and 20 were confirmed in Jersey cattle. Although several candidate genes were identified in these targeted regions, it was not possible to identify a gene or polymorphism as the causal factor for any of these regions.
Collapse
Affiliation(s)
- G Sahana
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark.
| | - B Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - B Thomsen
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - L-E Holm
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - F Panitz
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - R F Brøndum
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - C Bendixen
- Molecular Genetics and Systems Biology, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - M S Lund
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
21
|
Ayachi S, Simonin F. Involvement of Mammalian RF-Amide Peptides and Their Receptors in the Modulation of Nociception in Rodents. Front Endocrinol (Lausanne) 2014; 5:158. [PMID: 25324831 PMCID: PMC4183120 DOI: 10.3389/fendo.2014.00158] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/17/2014] [Indexed: 01/04/2023] Open
Abstract
Mammalian RF-amide peptides, which all share a conserved carboxyl-terminal Arg-Phe-NH2 sequence, constitute a family of five groups of neuropeptides that are encoded by five different genes. They act through five G-protein-coupled receptors and each group of peptide binds to and activates mostly one receptor: RF-amide related peptide group binds to NPFFR1, neuropeptide FF group to NPFFR2, pyroglutamylated RF-amide peptide group to QRFPR, prolactin-releasing peptide group to prolactin-releasing peptide receptor, and kisspeptin group to Kiss1R. These peptides and their receptors have been involved in the modulation of several functions including reproduction, feeding, and cardiovascular regulation. Data from the literature now provide emerging evidence that all RF-amide peptides and their receptors are also involved in the modulation of nociception. This review will present the current knowledge on the involvement in rodents of the different mammalian RF-amide peptides and their receptors in the modulation of nociception in basal and chronic pain conditions as well as their modulatory effects on the analgesic effects of opiates.
Collapse
Affiliation(s)
- Safia Ayachi
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
| | - Frédéric Simonin
- UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, Illkirch, France
- *Correspondence: Frédéric Simonin, UMR 7242 CNRS, Laboratory of Excellence Medalis, Biotechnologie et Signalisation Cellulaire, Université de Strasbourg, 300 Boulevard Sébastien Brant, Illkirch 67412, France e-mail:
| |
Collapse
|