1
|
Brancato A, Castelli V, Cannizzaro C, Tringali G. Adolescent binge-like alcohol exposure dysregulates NPY and CGRP in rats: Behavioural and immunochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123:110699. [PMID: 36565980 DOI: 10.1016/j.pnpbp.2022.110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Alcohol binge drinking during adolescence impacts affective behaviour, possibly impinging on developing neural substrates processing affective states, including calcitonin gene-related peptide (CGRP) and neuropeptide Y (NPY). Here, we modelled binge-like alcohol exposure in adolescence, by administering 3.5 g/kg alcohol per os, within 1 h, to male adolescent rats every other day, from postnatal day 35 to 54. The effects on positive and negative affective behaviour during abstinence were explored including: consummatory behaviour and weight gain; social behaviour in the modified social interaction test; thermal nociception in the tail-flick test; psychosocial stress coping in the resident-intruder paradigm. Moreover, CGRP and NPY levels were evaluated in functionally relevant brain regions. Our data shows that binge-like intermittent alcohol administration during adolescence decreased weight gain, social preference and motivation, nociception, and active psychosocial stress coping during abstinence. In addition, intermittent alcohol-exposed rats displayed increased expression of CGRP and NPY in the prefrontal cortex and nucleus accumbens; decreased NPY levels in the amygdala; opposite changes in CGRP levels in the hypothalamus and brainstem. Overall, our data shows that adolescent binge-like alcohol exposure, through the allostatic load of alternate intoxication and withdrawal, produces long-term consequences in sensory and affective processes and dysregulated complementary neuropeptidergic systems. Thus, neuropeptide-targeted interventions hold promising potential for addressing negative affect during prolonged withdrawal in young subjects.
Collapse
Affiliation(s)
- Anna Brancato
- University of Palermo, Dept. of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties of Excellence "G. D'Alessandro", piazza delle Cliniche 2, 90127 Palermo, Italy.
| | - Valentina Castelli
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Carla Cannizzaro
- University of Palermo, Dept. of Biomedicine, Neuroscience and Advanced Diagnostics, via del Vespro 129, 90127 Palermo, Italy
| | - Giuseppe Tringali
- Pharmacology Section, Department of Health Care Surveillance and Bioethics, Università Cattolica del Sacro Cuore, Largo F. Vito 1, 00168 Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy
| |
Collapse
|
2
|
Tringali G, Currò D, Navarra P. Perampanel inhibits calcitonin gene-related peptide release from rat brainstem in vitro. J Headache Pain 2018; 19:107. [PMID: 30419806 PMCID: PMC6755590 DOI: 10.1186/s10194-018-0940-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Background Perampanel is a novel antiepileptic drug acting via non-competitive antagonism on glutamatergic AMPA receptors, and the subsequent inhibition of ion calcium influx. Since it was recently postulated that the antagonists of glutamate receptors might play a role in the treatment of migraine, in this study we investigated the putative anti-migraine activity of perampanel in an in vitro animal model involving the static incubation of rat brainstem explants and the subsequent measurement of immune-reactive calcitonin gene-related peptide released into the incubation medium. Methods Acute rat brainstem explants were incubated in plain medium or in medium containing graded concentrations of perampanel. The release into the medium was assessed by radioimmunoassay either under baseline conditions or after stimulation by such secretagogues as high K+ concentrations, veratridine or capsaicin. Results We found that: 1) under baseline conditions perampanel, given in the range 0.01–100 μM, inhibited in a concentration-dependent manner calcitonin gene-related peptide’s release compared to controls; the decrease was statistically significant as from 10 μM; 2) a significant and consistent increase in calcitonin gene-related peptide’s secretion was induced by all depolarizing stimuli after 1 h of incubation; 3) under these conditions, calcitonin gene-related peptide’s release stimulated by 56 mM KCl was significantly reduced by perampanel from 0.1 μM onward, whereas secretion stimulated by veratridine was significantly reduced as from 1 μM; 4) on the contrary, perampanel had no effect on capsaicin-induced calcitonin gene-related peptide’s release up to 100 μM. Conclusions Here we provided preliminary in vitro evidence suggesting that perampanel might control pain transmission under conditions of activated trigeminal system, in a preclinical model mimicking the pathophysiology of human migraine.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Institute of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| | - Diego Currò
- Institute of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy
| | - Pierluigi Navarra
- Institute of Pharmacology, Fondazione Policlinico Universitario A. Gemelli IRCSS, Roma - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Rome, Italy.
| |
Collapse
|
3
|
Brancato A, Castelli V, Cavallaro A, Lavanco G, Plescia F, Cannizzaro C. Pre-conceptional and Peri-Gestational Maternal Binge Alcohol Drinking Produces Inheritance of Mood Disturbances and Alcohol Vulnerability in the Adolescent Offspring. Front Psychiatry 2018; 9:150. [PMID: 29743872 PMCID: PMC5930268 DOI: 10.3389/fpsyt.2018.00150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/04/2018] [Indexed: 12/28/2022] Open
Abstract
Although binge drinking is on the rise in women of reproductive age and during pregnancy, the consequences in the offspring, in particular the inheritance of alcohol-related mood disturbances and alcohol abuse vulnerability, are still poorly investigated. In this study, we modeled both Habitual- and Binge Alcohol Drinking (HAD and BAD) in female rats by employing a two-bottle choice paradigm, with 20% alcohol and water. The exposure started 12 weeks before pregnancy and continued during gestation and lactation. The consequences induced by the two alcohol drinking patterns in female rats were assessed before conception in terms of behavioral reactivity, anxiety- and depressive-like behavior. Afterwards, from adolescence to young-adulthood, male offspring was assessed for behavioral phenotype and alcohol abuse vulnerability. At pre-conceptional time BAD female rats showed higher mean alcohol intake and preference than HAD group; differences in drinking trajectories were attenuated during pregnancy and lactation. Pre-conceptional BAD induced a prevalent depressive/anhedonic-like behavior in female rats, rather than an increase in anxiety-like behavior, as observed in HAD rats. In the adolescent offspring, peri-gestational BAD did not affect behavioral reactivity in the open field and anxiety-like behavior in the elevated plus maze. Rather, BAD dams offspring displayed higher despair-behavior and lower social interaction with respect to control- and HAD dams progeny. Notably, only binge drinking exposure increased offspring vulnerability to alcohol abuse and relapse following forced abstinence. This is the first report showing that binge-like alcohol consumption from pre-conceptional until weaning induces relevant consequences in the affective phenotype of both the mothers and the offspring, and that such effects include heightened alcohol abuse vulnerability in the offspring. These findings highlight the need for more incisive public education campaigns about detrimental consequences of peri-gestational alcohol exposure.
Collapse
Affiliation(s)
- Anna Brancato
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Valentina Castelli
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Angela Cavallaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Gianluca Lavanco
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Fulvio Plescia
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Carla Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
4
|
Greco M, Capuano A, Navarra P, Tringali G. Lacosamide inhibits calcitonin gene-related peptide production and release at trigeminal level in the rat. Eur J Pain 2016; 20:959-66. [DOI: 10.1002/ejp.820] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2015] [Indexed: 01/08/2023]
Affiliation(s)
- M.C. Greco
- Institute of Pharmacology; Catholic University School of Medicine; Rome Italy
| | - A. Capuano
- Division of Neurology; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - P. Navarra
- Institute of Pharmacology; Catholic University School of Medicine; Rome Italy
| | - G. Tringali
- Institute of Pharmacology; Catholic University School of Medicine; Rome Italy
| |
Collapse
|
5
|
Abstract
This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants). This paper is the thirty-seventh consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2014 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (endogenous opioids and receptors), and the roles of these opioid peptides and receptors in pain and analgesia (pain and analgesia); stress and social status (human studies); tolerance and dependence (opioid mediation of other analgesic responses); learning and memory (stress and social status); eating and drinking (stress-induced analgesia); alcohol and drugs of abuse (emotional responses in opioid-mediated behaviors); sexual activity and hormones, pregnancy, development and endocrinology (opioid involvement in stress response regulation); mental illness and mood (tolerance and dependence); seizures and neurologic disorders (learning and memory); electrical-related activity and neurophysiology (opiates and conditioned place preferences (CPP)); general activity and locomotion (eating and drinking); gastrointestinal, renal and hepatic functions (alcohol and drugs of abuse); cardiovascular responses (opiates and ethanol); respiration and thermoregulation (opiates and THC); and immunological responses (opiates and stimulants).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
6
|
Greco MC, Navarra P, Tringali G. The analgesic agent tapentadol inhibits calcitonin gene-related peptide release from isolated rat brainstem via a serotonergic mechanism. Life Sci 2015; 145:161-5. [PMID: 26706288 DOI: 10.1016/j.lfs.2015.12.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/23/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022]
Abstract
AIMS In this study we tested the hypothesis that tapentadol inhibits GGRP release from the rat brainstem through a mechanism mediated by the inhibition of NA reuptake; as a second alternative hypothesis, we investigated whether tapentadol inhibits GGRP release via the inhibition of 5-HT reuptake. METHODS Rat brainstems were explanted and incubated in short-term experiments. CGRP released in the incubation medium was taken as a marker of CGRP release from the central terminals of trigeminal neurons within the brainstem. CGRP levels were measured by radioimmunoassay under basal conditions or in the presence of tapentadol; NA, 5-HT, clonidine, yohimbine and ondansetron were used as pharmacological tools to investigate the action mechanism of tapentadol. RESULTS The α2-antagonist yohimbine failed to counteract the effects of tapentadol. Moreover, neither NA nor the α2-agonist clonidine per se inhibited K(+)-stimulated CGRP release, thereby indicating that the effects of tapentadol are nor mediated through the block of NA reuptake. Further experiments showed that 5-HT and tramadol, which inhibits both NA and 5-HT reuptake, significantly reduced K(+)-stimulated CGRP release. Moreover, the 5-HT3 antagonist ondansetron was able to counteract the effects of tapentadol in this system. SIGNIFICANCE This study provided pharmacological evidence that tapentadol inhibits stimulated CGRP release from the rat brainstem in vitro through a mechanism involving an increase in 5-HT levels in the system and the subsequent activation of 5-HT3 receptors.
Collapse
Affiliation(s)
| | - Pierluigi Navarra
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy.
| | - Giuseppe Tringali
- Institute of Pharmacology, Catholic University Medical School, Rome, Italy
| |
Collapse
|
7
|
Quallo T, Gentry C, Bevan S, Broad LM, Mogg AJ. Activation of transient receptor potential ankyrin 1 induces CGRP release from spinal cord synaptosomes. Pharmacol Res Perspect 2015; 3:e00191. [PMID: 27022465 PMCID: PMC4777244 DOI: 10.1002/prp2.191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/02/2015] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is a sensor of nociceptive stimuli, expressed predominantly in a subpopulation of peptidergic sensory neurons which co-express the noxious heat-sensor transient receptor potential vanilloid 1. In this study, we describe a spinal cord synaptosome-calcitonin gene-related peptide (CGRP) release assay for examining activation of TRPA1 natively expressed on the central terminals of dorsal root ganglion neurons. We have shown for the first time that activation of TRPA1 channels expressed on spinal cord synaptosomes by a selection of agonists evokes a concentration-dependent release of CGRP which is inhibited by TRPA1 antagonists. In addition, our results demonstrate that depolarization of spinal cord synaptosomes by a high concentration of KCl induces CGRP release via a T-type calcium channel-dependent mechanism whilst TRPA1-induced CGRP release functions independently of voltage-gated calcium channel activation. Finally, we have shown that pre-treatment of synaptosomes with the opioid agonist, morphine, results in a reduction of depolarization-induced CGRP release. This study has demonstrated the use of a dorsal spinal cord homogenate assay for investigation of natively expressed TRPA1 channels and for modulation of depolarizing stimuli at the level of the dorsal spinal cord.
Collapse
Affiliation(s)
- Talisia Quallo
- Wolfson Centre for Age Related Diseases King's College London London SE1 1UL United Kingdom
| | - Clive Gentry
- Wolfson Centre for Age Related Diseases King's College London London SE1 1UL United Kingdom
| | - Stuart Bevan
- Wolfson Centre for Age Related Diseases King's College London London SE1 1UL United Kingdom
| | - Lisa M Broad
- Neuroscience Research Division Lilly Research Centre Eli Lilly & Co. Ltd Windlesham United Kingdom
| | - Adrian J Mogg
- Neuroscience Research Division Lilly Research Centre Eli Lilly & Co. Ltd Windlesham United Kingdom
| |
Collapse
|