1
|
Pashaie F, Hoornweg TE, Bikker FJ, Veenendaal T, Broere F, Veldhuizen EJA. Antiviral activity of cathelicidins against porcine epidemic diarrhea virus (PEDV): Mechanisms, and efficacy. Virus Res 2024; 350:199496. [PMID: 39528011 PMCID: PMC11607671 DOI: 10.1016/j.virusres.2024.199496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is a harmful coronavirus infecting pigs, which is resulting in substantial financial losses in the global pig industry. The lack of effective vaccines or treatments underscores the pressing need for new antiviral strategies. Antimicrobial peptides (AMPs), specifically cathelicidins such as LL-37, have demonstrated promising activity against a range of viruses. This study aims to elucidate the antiviral mechanisms of cathelicidins by examining their inhibitory capabilities against PEDV in vitro. Four pig-derived antimicrobial peptides (PMAP-36, PMAP-23, PR-39, and PG-1), together with chicken-derived CATH-B1 and human-derived LL-37 were analyzed for their anti-PEDV activity. Flow cytometry and fluorescent microscopy confirmed that LL-37 and CATH-B1 had strong inhibitory effects at non-toxic concentrations of 5 and 10 µM, significantly reducing GFP-PEDV infection of Vero cells both in co- and pre-incubation setups. In contrast, none of the porcine peptides exhibited any inhibitory effects, even at higher doses. Fluorogenic LL-37 was shown to enter VERO cells, indicative of a possible immunomodulatory antiviral mode of action. However, transmission electron microscopy clearly indicated that both LL-37 and CATH-B1 affected virus morphology and caused aggregation of viral particles, showing that peptide-virus interaction caused reduced virus infectivity. In conclusion, this analysis highlights the potential of LL-37 and CATH-B1 as inhibitors against PEDV, suggesting promising directions for innovative therapeutic antiviral strategies.
Collapse
Affiliation(s)
- Fatemeh Pashaie
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Tabitha E Hoornweg
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Amsterdam 1081 LA, the Netherlands
| | - Tineke Veenendaal
- Cell Microscopy Core, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584CX, the Netherlands
| | - Femke Broere
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht 3584 CL, the Netherlands.
| |
Collapse
|
2
|
Role of Antimicrobial Peptides in Treatment and Prevention of Mycobacterium Tuberculosis: A Review. Int J Pept Res Ther 2022; 28:132. [PMID: 35891800 PMCID: PMC9305673 DOI: 10.1007/s10989-022-10435-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2022] [Indexed: 11/01/2022]
Abstract
Tuberculosis (TB) is one of the leading cause of death worldwide, and the world is fighting with this global health emergency from the past 25 year. The current clinical interventions for the management of TB face a number of inherent challenges which includes low patient compliance due to the long therapy regimen, and emerging antimicrobial resistance. Therefore, there is an unmet need of new anti-TB therapeutic agent with enhanced safety profile, which can reduce the duration of therapy, enhanced bioavailability and efficacy against drug resistant forms of TB. Bacteriocins or anti microbial peptides (AMPs) occurring in microbes, human beings and other life forms have been investigated as host defense peptides. Structurally AMPs are short and ionized and play crucial role in innate immunity of host. Some AMPs can kill microbial infections directly while others function indirectly by altering the host defense mechanisms. Amidst rising issue of antibiotic resistance, AMPs are being tested in clinical research as potential antibiotics and novel therapeutics to fight against infections and non-infectious diseases. Studies have also highlighted the ability of AMPs to act against the bacteria spreading tuberculosis. The present review provides information on antimicrobial peptides, highlights their biological role, classification and mode of action in treatment and prevention of tuberculosis. It further mentions the prospects and challenges of developing peptides for their therapeutic applications against mycobacterium tuberculosis.
Collapse
|
3
|
Raj S, Venugopal U, Pant G, Kalyan M, Arockiaraj J, Krishnan MY, Pasupuleti M. Anti-mycobacterial activity evaluation of designed peptides: cryptic and database filtering based approach. Arch Microbiol 2021; 203:4891-4899. [PMID: 34244831 DOI: 10.1007/s00203-021-02474-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023]
Abstract
Worldwide, TB is one of the deadly airborne diseases, which accounts for 10.4 million deaths annually. Serious toxicity issue, prolonged treatment regimens of the current drugs, rise in multidrug-resistant strains, and the unique defensive mechanism makes the development of novel therapeutic molecules against Mycobacterium tuberculosis (MT) an urgent need. As MT has a lengthy latent phase and unique cell wall architecture, a reasonable approach is needed to find molecules having a different killing mechanism rather than traditional approaches. Host defence peptides (HDPs) will be the most promising alternative, potential therapeutic candidates as they target the microbial membrane in particular and are an essential part of the innate immunity of humans. This works demonstrates the utility of "Database filtering" and three-dimensional (3D) modelling approach in finding novel AMPs with appreciable activity towards MT. Results of this study indicate that peptides with 70% hydrophobicity, but without hydrophobicity patches (> 4 hydrophobic amino acids in series) and charge of + 4 or + 5 are most likely to be good anti-tubercular candidates.
Collapse
Affiliation(s)
- Sneha Raj
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Umamageswaran Venugopal
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Garima Pant
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mitra Kalyan
- Electron Microscopy Unit, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Manju Y Krishnan
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | - Mukesh Pasupuleti
- Microbiology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India.
| |
Collapse
|
4
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
5
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
6
|
Sharma R, Raghav R, Priyanka K, Rishi P, Sharma S, Srivastava S, Verma I. Exploiting chitosan and gold nanoparticles for antimycobacterial activity of in silico identified antimicrobial motif of human neutrophil peptide-1. Sci Rep 2019; 9:7866. [PMID: 31133658 PMCID: PMC6536545 DOI: 10.1038/s41598-019-44256-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/13/2019] [Indexed: 12/13/2022] Open
Abstract
The upsurge of drug resistant tuberculosis is major health threat globally. To counteract, antimicrobial peptides are being explored as possible alternatives. However, certain limitations of peptide-based drugs such as potential toxicity, high cost and relatively low stability need to be addressed to enhance their clinical applicability. Use of computer predicted short active motifs of AMPs along with nanotechnology could not only overcome the limitations of AMPs but also potentiate their antimicrobial activity. Therefore, present study was proposed to in silico identify short antimicrobial motif (Pep-H) of human neutrophil peptide-1 (HNP-1) and explore its antimycobacterial activity in free form and using nanoparticles-based delivery systems. Based on colony forming unit analysis, motif Pep-H led to killing of more than 90% M. tb in vitro at 10 μg/ml, whereas, similar activity against intracellularly growing M. tb was observed at 5 μg/ml only. Thereafter, chitosan (244 nm) and gold nanoparticles (20 nm) were prepared for Pep-H with both the formulations showing minimal effects on the viability of human monocyte derived macrophages (MDMs) and RBC integrity. The antimycobacterial activity of Pep-H against intracellular mycobacteria was enhanced in both the nanoformulations as evident by significant reduction in CFU (>90%) at 5-10 times lower concentrations than that observed for free Pep-H. Thus, Pep-H is an effective antimycobacterial motif of HNP-1 and its activity is further enhanced by chitosan and gold nanoformulations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ragini Raghav
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Kumari Priyanka
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Rishi
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sadhna Sharma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Indu Verma
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
7
|
The Synergistic Antibacterial Properties of Glycinin Basic Peptide against Bacteria via Membrane Damage and Inactivation of Enzymes. FOOD BIOPHYS 2019. [DOI: 10.1007/s11483-018-09564-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Arranz-Trullén J, Lu L, Pulido D, Bhakta S, Boix E. Host Antimicrobial Peptides: The Promise of New Treatment Strategies against Tuberculosis. Front Immunol 2017; 8:1499. [PMID: 29163551 PMCID: PMC5681943 DOI: 10.3389/fimmu.2017.01499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) continues to be a devastating infectious disease and remerges as a global health emergency due to an alarming rise of antimicrobial resistance to its treatment. Despite of the serious effort that has been applied to develop effective antitubercular chemotherapies, the potential of antimicrobial peptides (AMPs) remains underexploited. A large amount of literature is now accessible on the AMP mechanisms of action against a diversity of pathogens; nevertheless, research on their activity on mycobacteria is still scarce. In particular, there is an urgent need to integrate all available interdisciplinary strategies to eradicate extensively drug-resistant Mycobacterium tuberculosis strains. In this context, we should not underestimate our endogenous antimicrobial proteins and peptides as ancient players of the human host defense system. We are confident that novel antibiotics based on human AMPs displaying a rapid and multifaceted mechanism, with reduced toxicity, should significantly contribute to reverse the tide of antimycobacterial drug resistance. In this review, we have provided an up to date perspective of the current research on AMPs to be applied in the fight against TB. A better understanding on the mechanisms of action of human endogenous peptides should ensure the basis for the best guided design of novel antitubercular chemotherapeutics.
Collapse
Affiliation(s)
- Javier Arranz-Trullén
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Lu Lu
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - David Pulido
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, Institute of Structural and Molecular Biology, Birkbeck University of London, London, United Kingdom
| | - Ester Boix
- Faculty of Biosciences, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
9
|
AlMatar M, Makky EA, Yakıcı G, Var I, Kayar B, Köksal F. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res 2017; 128:288-305. [PMID: 29079429 DOI: 10.1016/j.phrs.2017.10.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB) presently accounts for high global mortality and morbidity rates, despite the introduction four decades ago of the affordable and efficient four-drugs (isoniazid, rifampicin, pyrazinamide and ethambutol). Thus, a strong need exists for new drugs with special structures and uncommon modes of action to effectively overcome M. tuberculosis. Within this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that comprise a section of the innate immune system, are currently the leading potential agents for the treatment of TB. Many studies have recently illustrated the capability of anti-mycobacterial peptides to disrupt the normal mycobacterial cell wall function through various modes, thereby interacting with the intracellular targets, as well as encompassing nucleic acids, enzymes and organelles. This review presents a wide array of antimicrobial activities, alongside the associated properties of the AMPs that could be utilized as potential agents in therapeutic tactics for TB treatment.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü) Çukurova University, Adana, Turkey.
| | - Essam A Makky
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang (UMP), Gambang, 26300 Kuantan, Malaysia
| | - Gülfer Yakıcı
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Işıl Var
- Department of Food Engineering, Agricultural Faculty, Çukurova University, Adana, Turkey
| | - Begüm Kayar
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| | - Fatih Köksal
- Department of Medical Microbiology, Faculty of Medicine, Çukurova University, Adana, Turkey
| |
Collapse
|
10
|
Activity of human beta defensin-1 and its motif against active and dormant Mycobacterium tuberculosis. Appl Microbiol Biotechnol 2017; 101:7239-7248. [PMID: 28856417 DOI: 10.1007/s00253-017-8466-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/24/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
The ineffectiveness of anti-tuberculous therapy against dormant and drug-resistant mycobacteria demands scrutiny of alternative candidates like antimicrobial peptides having different mechanisms of action. The present study was designed to explore the activity of human beta defensin-1 (HBD-1) and its in silico identified short motif Pep-B against active and dormant Mycobacterium tuberculosis (M. tb) H37Rv. Activity of HBD-1 and Pep-B was determined against actively growing M. tb in vitro, inside monocyte-derived macrophages (MDMs) and dormant bacilli in in vitro potassium deficiency and human peripheral blood mononuclear cell (PBMC) granuloma models using colony-forming unit enumeration. The minimum inhibitory concentrations (MIC) of HBD-1 and Pep-B were found to be 2 and 20 μg/ml, respectively. These peptides also inhibited intracellular mycobacterial growth at concentrations lower than in vitro MICs along with increased IFN-γ levels. Although at higher concentration, HBD-1 (× 2 MIC) and Pep-B (× 2 MIC) led to decrease in in vitro dormant mycobacterial load as compared to rifampicin (× 25 MIC) and isoniazid (× 16 MIC). Similarly, both peptides showed higher killing efficacy against dormant mycobacteria inside granuloma as compared to rifampicin. Thus, the present study indicates that HBD-1 and its motif are effective antimicrobial players against both actively growing and dormant mycobacteria.
Collapse
|
11
|
Lin S, Liang R, Zhang T, Yuan Y, Shen S, Ye H. Microarray analysis of the transcriptome of theEscherichia coli(E. coli) regulated by cinnamaldehyde (CMA). FOOD AGR IMMUNOL 2017. [DOI: 10.1080/09540105.2017.1300875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Songyi Lin
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, People’s Republic of China
| | - Rong Liang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Tiehua Zhang
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Yuan Yuan
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Suxia Shen
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| | - Haiqing Ye
- College of Food Science and Technology, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
12
|
Santos P, López-Vallejo F, Soto CY. In silico approaches and chemical space of anti-P-type ATPase compounds for discovering new antituberculous drugs. Chem Biol Drug Des 2017; 90:175-187. [PMID: 28111912 DOI: 10.1111/cbdd.12950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tuberculosis (TB) is one of the most important public health problems around the world. The emergence of multi-drug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis strains has driven the finding of alternative anti-TB targets. In this context, P-type ATPases are interesting therapeutic targets due to their key role in ion homeostasis across the plasma membrane and the mycobacterial survival inside macrophages. In this review, in silico and experimental strategies used for the rational design of new anti-TB drugs are presented; in addition, the chemical space distribution based on the structure and molecular properties of compounds with anti-TB and anti-P-type ATPase activity is discussed. The chemical space distribution compared to public compound libraries demonstrates that natural product libraries are a source of novel chemical scaffolds with potential anti-P-type ATPase activity. Furthermore, compounds that experimentally display anti-P-type ATPase activity belong to a chemical space of molecular properties comparable to that occupied by those approved for oral use, suggesting that these kinds of molecules have a good pharmacokinetic profile (drug-like) for evaluation as potential anti-TB drugs.
Collapse
Affiliation(s)
- Paola Santos
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Fabian López-Vallejo
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos-Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
13
|
Lin S, Liu X, Liu B, Yu Y. Optimization of pine nut (Pinus koraiensis) meal protein peptides on immunocompetence in innate and adaptive immunity response aspects. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1228835] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
14
|
Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress. Infect Immun 2016; 84:2505-23. [PMID: 27324481 DOI: 10.1128/iai.00072-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/10/2016] [Indexed: 12/27/2022] Open
Abstract
Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1.
Collapse
|