1
|
Antonopoulou S, Petsini F, Detopoulou M, Theoharides TC, Demopoulos CA. Is there an interplay between the SARS-CoV-2 spike protein and Platelet-Activating factor? Biofactors 2022; 48:1271-1283. [PMID: 35852257 PMCID: PMC9349578 DOI: 10.1002/biof.1877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022]
Abstract
Previous publications have reported a potent effect of COVID-19 on platelet function and that the Spike protein enhances washed human platelet aggregation induced by various agonists. This study aims to evaluate whether mRNA vaccination for COVID-19 affects human platelet-rich plasma (hPRP) aggregation response, whether a recombinant Spike protein modulates PAF-induced aggregation in hPRP and in washed rabbit platelets (WRP), and to investigate the effect of recombinant Spike protein on the PAF production in the U-937 cell line. Our results showed that PRP from vaccinated individuals exhibited ex vivo lower EC50 values in response to PAF, ADP, and collagen. Platelet incubation with the Spike protein alone did not induce aggregation either in hPRP or in WRP, but resulted in augmentation of in vitro PAF-induced aggregation in hPRP from non-vaccinated individuals and in WRP. When PRP from vaccinated individuals was incubated with the Spike protein and PAF was subsequently added, elimination of the secondary wave of the biphasic aggregation curve was recorded compared with the aggregation induced by PAF alone. Collagen-induced in vitro aggregation was dose-dependently reduced when platelets were pre-incubated with the Spike protein in all tested aggregation experiments. Stimulation of U-937 by the Spike protein induced an increase in intracellular PAF production accompanied by elevation of the activities of all three PAF biosynthetic enzymes. In conclusion, since the Spike protein appears to modulate PAF production and activity, the use of compounds that act as PAF inhibitors, could be considered at least in mild cases of patients infected with SARS-CoV-2.
Collapse
Affiliation(s)
- Smaragdi Antonopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Filio Petsini
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Maria Detopoulou
- Laboratory of Biology, Biochemistry and Microbiology, Department of Nutrition‐Dietetics, School of Health Sciences and EducationHarokopio UniversityAthensGreece
| | - Theoharis C. Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of ImmunologyTufts University School of MedicineBostonMassachusettsUnited States
- School of Graduate Biomedical SciencesTufts University School of MedicineBostonMassachusettsUnited States
- Department of Internal MedicineTufts University School of Medicine and Tufts Medical CenterBostonMassachusettsUnited States
| | | |
Collapse
|
2
|
Xu H, An X, Tian J, Fu M, Wang Q, Li C, He X, Niu L. Angiotensin-(1-7) protects against sepsis-associated left ventricular dysfunction induced by lipopolysaccharide. Peptides 2021; 144:170612. [PMID: 34298021 DOI: 10.1016/j.peptides.2021.170612] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Sepsis-induced myocardial dysfunction is a major cause of death. The present study explored whether angiotensin (Ang)-(1-7), an important biologically active peptide of the renin-angiotensin system, could improve cardiac dysfunction and attenuate inflammation and apoptosis. Experiments were carried out in mice and in neonatal rat cardiomyocytes (NRCMs) treated with lipopolysaccharide (LPS) or Ang-(1-7). Angiotensin converting enzyme 2 (ACE2), Ang-(1-7) and Mas receptor (MasR) expressions were reduced in the mouse left ventricular and NRCM treated with LPS. Ang-(1-7) increased the ejection fraction and fractional shortening of left ventricular, which were reduced upon LPS injection in mice. Ang-(1-7) pre-treatment reversed LPS-induced decreases of α-myosin heavy chain (MHC) and β-MHC, and increases of S100 calcium binding protein A8 (S100A8) and S100A9 in the mouse left ventricular. The LPS-induced increases of tumor necrosis factor (TNF)-α and interleukin (IL)-1β in the mouse left ventricular and NRCMs were inhibited by Ang-(1-7) administration. Ang-(1-7) treatment reversed the increases of cleaved-caspase 3, cleaved-caspase 8 and Bax, and the decrease of Bcl2 induced by LPS in the mouse left ventricular and NRCMs. The increases of MAPKs pathway induced by LPS in NRCMs were inhibited by Ang-(1-7). These results indicate that Ang-(1-7) protects against sepsis-associated left ventricular dysfunction induced by LPS, and increases cardiac contractility via attenuating inflammation and apoptosis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xinjiang An
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing Tian
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingyu Fu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qingwen Wang
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunli Li
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiuhua He
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Niu
- Department of Cardiology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Li P, Chen XR, Xu F, Liu C, Li C, Liu H, Wang H, Sun W, Sheng YH, Kong XQ. Alamandine attenuates sepsis-associated cardiac dysfunction via inhibiting MAPKs signaling pathways. Life Sci 2018; 206:106-116. [PMID: 29679702 DOI: 10.1016/j.lfs.2018.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Sepsis-induced myocardial dysfunction represents a major cause of death. Alamandine is an important biologically active peptide. The present study evaluated whether alamandine improves cardiac dysfunction, inflammation, and apoptosis, and affects the signaling pathways involved in these events. Experiments were carried out in mice treated with lipopolysaccharide (LPS) or alamandine, and in neonatal rat cardiomyocytes. Alamandine increased the ejection fraction and fractional shortening, both of which were decreased upon LPS infusion in mice. LPS and alamandine reduced blood pressure, and increased the expression of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) in the heart in mice. The LPS-induced decrease in α-myosin heavy chain (MHC) and β-MHC, and increase in S100 calcium binding protein A8 (S100A8) and S100A9, were reversed by alamandine pre-treatment. Alamandine pre-treatment prevented LPS-induced myocardial inflammation, apoptosis and autophagy. LPS increased p-ERK, p-JNK, and p-p38 levels, which were inhibited by alamandine. Dibutyryl cyclic AMP (db-cAMP) increased p-ERK, p-JNK, and p-p38 levels, and reversed the inhibitory effects of alamandine on the LPS-induced increase in p-ERK, p-JNK, and p-p38. Moreover, db-cAMP reduced the expression of α-MHC and β-MHC in cardiomyocytes, and reversed the almandine-induced attenuation of the LPS-induced decrease in α-MHC and β-MHC. These results indicate that alamandine attenuates LPS-induced cardiac dysfunction, resulting in increased cardiac contractility, and reduced inflammation, autophagy, and apoptosis. Furthermore, alamandine attenuates sepsis induced by LPS via inhibiting the mitogen-activated protein kinases (MAPKs) signaling pathways.
Collapse
Affiliation(s)
- Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi-Ru Chen
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Xu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chang Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Department of Ultrasound, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan-Hui Sheng
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiang-Qing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Sato A, Ueda C, Kimura R, Kobayashi C, Yamazaki Y, Ebina K. Angiotensin II induces the aggregation of native and oxidized low-density lipoprotein. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:1-9. [PMID: 28401261 DOI: 10.1007/s00249-017-1208-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 12/30/2022]
Abstract
Modifications of low-density lipoprotein (LDL), such as oxidation and aggregation, and angiotensin (Ang) peptides are involved in the pathogenesis of atherosclerosis. Here, we investigated the relationship between one of the Ang peptides, AngII, and two LDL modifications, oxidation and aggregation. Using polyacrylamide gel electrophoresis and aggregation assays, we noted that AngII markedly induced the aggregation of LDL and oxidized LDL (Ox-LDL), and bound to both the aggregated and non-aggregated forms. In contrast, a peptide (AngIII) formed by deletion of N-terminal Asp of AngII induced the aggregation of Ox-LDL but not LDL. From tyrosine fluorescence measurements, we noted that AngII interacted with two major lipid components in LDL and Ox-LDL, phosphatidylcholine (PC) and oxidized PC, while AngIII interacted with oxidized PC, but not with PC and lysophosphatidylcholine. Moreover, results from thiobarbituric acid-reactive substances assay proved that AngII did not induce oxidation of LDL. These results suggest that AngII can be involved in the pathogenesis of atherosclerosis by binding to LDL and Ox-LDL-especially to the major lipid components, PC and oxidized PC-followed by inducing the aggregation of LDL and Ox-LDL and that the N-terminal Asp of AngII is important for the binding and aggregation specificity of LDL and Ox-LDL.
Collapse
Affiliation(s)
- Akira Sato
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan.
| | - Chiemi Ueda
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Ryu Kimura
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Chisato Kobayashi
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Yoji Yamazaki
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| | - Keiichi Ebina
- Faculty of Pharmacy, Iwaki Meisei University, 5-5-1, Chuodai-Iino, Iwaki, Fukushima, 970-8551, Japan
| |
Collapse
|