1
|
Yu MQ, Linghu JH, Xie HY, Li G, Zhu F, Smagghe G, Gui SH, Liu TX. Characterization of sulfakinin and its role in larval feeding and molting in Spodoptera frugiperda. INSECT SCIENCE 2025. [PMID: 39760383 DOI: 10.1111/1744-7917.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/29/2024] [Accepted: 10/28/2024] [Indexed: 01/07/2025]
Abstract
Feeding and molting are particularly important physiological processes for insects, and it has been reported that neuropeptides are involved in the nervous regulation of these 2 processes. Sulfakinin (SK) is an important neuropeptide that is widely distributed among insects and plays a pivotal role in regulating feeding, courtship, aggression, and locomotion. In this study, we investigated the involvement of SK in feeding and molting on a highly notorious pest insect, the fall armyworm, Spodoptera frugiperda. SK transcript levels were found in all larval stages and there was a predominant expression of SK in the brain of 5th instar larvae. By immunostaining, SK was detected in 2 pairs of cells in the median protocerebrum. But during prolonged periods of starvation, there was a significant reduction in SK messenger RNA levels; however, subsequent refeeding led to a notable increase. To investigate the role of SK in feeding and molting, SK was silenced in S. frugiperda larvae through RNA interference. This resulted in a significant increase in food intake, weight gain, and the molting process happened more rapidly in the double-stranded SK-treated larvae compared to the controls. Conversely, injection of sulfated SK peptide (sSK) caused opposite effects. Interestingly, SK-knockdown in larvae resulted in increased levels of 20-hydroxyecdysone and also of the expression of some of it signaling pathway genes. Altogether, this study highlights the important role played by SK in regulating feeding and molting in S. frugiperda.
Collapse
Affiliation(s)
- Ming-Qing Yu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jun-Hong Linghu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Hua-Yan Xie
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Gang Li
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Feng Zhu
- Guizhou Center for Pesticide Risk Monitoring, Institute of Plant Protection, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| |
Collapse
|
2
|
Orchard I, Leyria J, Al-Dailami AN, Nachman RJ, Lange AB. Functional characterization of the kinin receptor in the Chagas disease vector Rhodnius prolixus; activity of native kinins and potent biostable Aib-containing insect kinin analogs. Peptides 2024; 172:171135. [PMID: 38103839 DOI: 10.1016/j.peptides.2023.171135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
The causative agent for Chagas disease, Trypanosoma cruzi, is transmitted to a human host in the urine/feces of the kissing bug, Rhodnius prolixus, following blood feeding. Kinins are important chemical messengers in the overall control of blood feeding physiology in R. prolixus, including hindgut contractions and excretion. Thus, disruption in kinin signaling would have damaging consequences to the insect but also interfere with the transmission of Chagas Disease. Here, a heterologous functional receptor assay was used to confirm the validity of the previously cloned putative kinin G-protein-coupled receptor, RhoprKR, in Rhodnius prolixus. Three native R. prolixus kinins were chosen for analysis; two possessing the typical kinin WGamide C-terminal motif and one that possesses an atypical C-terminal WAamide. All three are potent (EC50 values in the nM range), with high efficacy, on CHO-K1-aeq cells expressing the RhoprKR, thereby confirming ligand binding. Members of three other R. prolixus peptide families, which are also myotropins (tachykinins, pyrokinins and sulfakinins) elicited little or no response. In addition, this heterologous receptor assay was used to test characteristics of kinin mimetics previously tested on tick and mosquito kinin receptors. Five α-aminoisobutyric acid (Aib) containing analogs were tested, and four found to have considerably higher potencies than the native kinins, with EC50 values in the pM range. Interestingly, adding Aib to the atypical WAamide kinin improves its EC50 value from 2 nM to 39 pM. Biostable kinin analogs may prove useful leads for novel pest control strategies. Since T. cruzi is transmitted to a human host in the urine/feces after blood feeding, disruption in kinin signaling would also interfere with the transmission of Chagas Disease.
Collapse
Affiliation(s)
- Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Jimena Leyria
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Areej N Al-Dailami
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ronald J Nachman
- Southern Plains Agricultural Research Center, USDA, College Station, TX, USA
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
3
|
Xiong C, Baker D, Pietrantonio PV. A random small molecule library screen identifies novel antagonists of the kinin receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2021; 77:2238-2251. [PMID: 33415807 DOI: 10.1002/ps.6249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/17/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The southern cattle tick, Rhipicephalus microplus, is a primary vector of the deadly bovine disease babesiosis. Worldwide populations of ticks have developed resistance to acaricides, underscoring the need for novel target discovery for tick control. The arthropod-specific R. microplus kinin receptor is such a target, previously validated by silencing, which resulted in female reproductive fitness costs, including a reduced percentage of eggs hatching. RESULTS In order to identify potent small molecules that bind and activate or inhibit the kinin receptor, a high-throughput screening (HTS) assay was developed using a CHO-K1 cell line expressing the recombinant tick kinin receptor (BMLK3 ). A total of ~20 000 molecules from a random in-house small molecule library were screened in a 'dual-addition' calcium fluorescence assay. This was followed by dose-response validation of the hit molecules identified both from HTS and an in silico screen of ~390 000 molecules. We validated 29 antagonists, 11 of them were full antagonists with IC50 values between 0.67 and 8 μmol L-1 . To explore the structure-activity relationships (SAR) of the small molecules, we tested the activities of seven analogs of the most potent identified antagonist, additionally discovering three full antagonists and four partial antagonists. These three potent antagonists (IC50 < 3.2 μmol L-1 ) were validated in vitro using the recombinant mosquito kinin receptor and showed similar antagonistic activities. In vivo, these three compounds also inhibited the mosquito hindgut contraction rate induced by a myotropic kinin agonist analog 1728. CONCLUSION Antagonists identified in this study could become pesticide leads and are reagents for probing the kinin signaling system. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | | |
Collapse
|
4
|
Xiong C, Kaczmarek K, Zabrocki J, Nachman RJ, Pietrantonio PV. Activity of native tick kinins and peptidomimetics on the cognate target G protein-coupled receptor from the cattle fever tick, Rhipicephalus microplus (Acari: Ixodidae). PEST MANAGEMENT SCIENCE 2020; 76:3423-3431. [PMID: 31794138 DOI: 10.1002/ps.5704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Kinins are multifunctional neuropeptides that regulate key insect physiological processes such as diuresis, feeding, and ecdysis. However, the physiological roles of kinins in ticks are unclear. Furthermore, ticks have an expanded number of kinin paracopies in the kinin gene. Silencing the kinin receptor (KR) in females of Rhipicephalus microplus reduces reproductive fitness. Thus, it appears the kinin signaling system is important for tick physiology and its disruption may have potential for tick control. RESULTS We determined the activities of endogenous kinins on the KR, a G protein-coupled receptor, and identified potent peptidomimetics. Fourteen predicted R. microplus kinins (Rhimi-K), and 11 kinin analogs containing aminoisobutyric acid (Aib) were tested. The latter incorporated tick kinin sequences and/or were modified for enhanced resistance to arthropod peptidases. A high-throughput screen using a calcium fluorescence assay in 384-well plates was performed. All tested kinins and Aib analogs were full agonists. The most potent kinin and two kinin analogs were equipotent. Analogs 2414 ([Aib]FS[Aib]WGa) and 2412 ([Aib]FG[Aib]WGa) were the most active with EC50 values of 0.9 and 1.1 nM, respectively, matching the EC50 of the most potent tick kinin, Rhimi-K-14 (QDSFNPWGa) (EC50 = 1 nM). The potent analog 2415 ([Aib]FR[Aib]WGa, EC50 = 6.8 nM) includes both Aib molecules for resistance to peptidases and a positively charged residue, R, for enhanced water solubility and amphiphilic character. CONCLUSION These tick kinins and pseudopeptides expand the repertoire of reagents for tick physiology and toxicology towards finding novel targets for tick management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | - Janusz Zabrocki
- Institute of Organic Chemistry, Lodz University of Technology, Lodz, Poland
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | - Ronald J Nachman
- Insect Neuropeptide Lab, Insect Control and Cotton Disease Research Unit, Southern Plains Agricultural Research Center, U.S. Department of Agriculture, College Station, TX, USA
| | | |
Collapse
|
5
|
Abou El Asrar R, Cools D, Vanden Broeck J. Role of peptide hormones in insect gut physiology. CURRENT OPINION IN INSECT SCIENCE 2020; 41:71-78. [PMID: 32814267 DOI: 10.1016/j.cois.2020.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/09/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Nutrient uptake and digestion are essential for optimal growth and development. In insects, these processes are regulated by the gut-brain axis, which is a neurohumoral communication system for maintaining gut homeostasis. The insect gut is a complex organ consisting of three distinct structures, denominated foregut, midgut and hindgut, each with their specific specializations. These specializations are tightly regulated by the interplay of several neuropeptides: a versatile group of signalling molecules involved in a multitude of processes including gut physiology. Neuropeptides take part in the regulation of gut processes ranging from digestive enzyme release to muscle activity and satiety. Some neuropeptide mimetics are a promising strategy for ecological pest management. This review focuses on a selection of neuropeptides that are well-known for their role in gut physiology, and neuropeptides for which the mode of action is yet to be unravelled.
Collapse
Affiliation(s)
- Rania Abou El Asrar
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Dorien Cools
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- KU Leuven, Department of Biology, Research Group of Molecular Developmental Physiology and Signal Transduction, Naamsestraat 59 Box 2465, 3000 Leuven, Belgium.
| |
Collapse
|
6
|
Zhang C, Li X, Song D, Ling Y, Zhou Y, Yang X. Synthesis, aphicidal activity and conformation of novel insect kinin analogues as potential eco-friendly insecticides. PEST MANAGEMENT SCIENCE 2020; 76:3432-3439. [PMID: 31840904 DOI: 10.1002/ps.5721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/03/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The discovery of ecofriendly insecticides through a new strategy for aphid control is important because of the substantial resistance and unexpected eco-toxicity to honeybees caused by traditional insecticides. The insect kinins, a class of multifunctional insect neuropeptides, are considered for potential application in pest control. In our previous work we developed several series of insect kinin analogues and found a promising lead II-1 with good aphicidal activity. To seek further eco-friendly aphicides, the optimization of II-1 is carried out in this study. RESULTS Fifteen novel Yaa3 modified analogues based on the lead II-1 were synthesized. The aphicidal tests indicated that IV-3, IV-5 and IV-10 exhibited significant activity against the soybean aphid Aphis glycines with LC50 values of 0.0029, 0.0072 and 0.0086 mmol L-1 , respectively, higher than that of lead II-1 and the commercial Pymetrozine. The molecular modeling results showed that analogues II-1, IV-3, IV-5, IV-7 and IV-10 formed a β-turn-like conformation, while the conformation of analogues IV-1, IV-2 and IV-9 seemed to be linear. Some structural elements favorable for the activity were proposed based on the conformation-activity relationship of the analogues. CONCLUSION Insect kinin analogues derived from lead II-1 by modifying the hydrolysis site Yaa3 with natural, sterically hindered α- and β-amino acids showed great potential as eco-friendly insecticides. Inspiringly, the most active analogue IV-3 can be a candidate for further development. The β-turn-like conformation and the orientation of the aromatic rings of the side chain of Phe2 and Trp4 may be critical factors beneficial to activity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chuanliang Zhang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xinlu Li
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Dunlun Song
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Yun Ling
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Yuanlin Zhou
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| | - Xinling Yang
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
7
|
Sangha V, Lange AB, Orchard I. Identification and cloning of the kinin receptor in the Chagas disease vector, Rhodnius prolixus. Gen Comp Endocrinol 2020; 289:113380. [PMID: 31891689 DOI: 10.1016/j.ygcen.2019.113380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 11/24/2022]
Abstract
Within invertebrates, the kinin family of neuropeptides is responsible for the modulation of a host of physiological and behavioural processes. In Rhodnius prolixus, kinins are primarily responsible for eliciting myotropic effects on various feeding and diuresis-related tissues. Here, the R. prolixus kinin receptor (RhoprKR) has been identified, cloned and sequenced from the central nervous system (CNS) and hindgut of R. prolixus. Sequence analyses show high similarity and identity between RhoprKR and other cloned invertebrate kinin receptors. The expression profile of RhoprKR shows the RhoprKR transcript throughout the R. prolixus gut, with highest expression in the hindgut, suggesting a role of Rhopr-kinins in various aspects of feeding and digestion. RNA interference (RNAi)-mediated knockdown of the RhoprKR transcript resulted in a significant reduction of hindgut contractions in response to Rhopr-kinin 2 and an Aib-containing kinin analog. dsRhoprKR- injected insects also consumed a significantly larger meal, suggesting a role of Rhopr-kinins in satiety.
Collapse
Affiliation(s)
- Vishal Sangha
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| | - Ian Orchard
- Department of Biology University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON L5L 1C6, Canada.
| |
Collapse
|
8
|
Sangha V, Nachman RJ, Lange A, Orchard I. Physiological effects of biostable kinin and CAPA analogs in the Chagas disease vector, Rhodnius prolixus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 114:103223. [PMID: 31465823 DOI: 10.1016/j.ibmb.2019.103223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
In the Chagas disease vector Rhodnius prolixus, the kinin and CAPA family of neuropeptides are implicated in feeding and diuresis-related behaviours, with Rhopr-kinins stimulating contractions of the midgut, salivary glands, and hindgut, and RhoprCAPA-2 functioning as an anti-diuretic hormone. The current study examined the effects of kinin and CAPA neuropeptides and their analogs on feeding and diuresis, and on hindgut contractions and MT fluid secretion in R. prolixus. The biostable Aib-containing kinin analog 2139[Φ1]wp-2 was found to have antifeedant effects, and to be more potent than Rhopr-kinin 2 in stimulating hindgut contractions. The CAPA analog 2129-SP3[Φ3]wp-2 induced the intake of a larger blood meal, and increased the rate of post-prandial rapid diuresis. RhoprCAPA-2, but not its analog, potentiated hindgut contractions induced by Rhopr-kinin 2. Potentiation was observed with the CAPA analog on 5-HT-stimulated increases in frequency of hindgut contractions, whereas RhoprCAPA-2 inhibited this 5-HT-mediated stimulation. The CAPA analog induced hindgut contractions and prevented the inhibition induced by RhoprCAPA-2 on 5-HT-stimulated MT secretion. These results demonstrate novel interactions between Rhopr-kinin and RhoprCAPA-2 on the hindgut, possibly influencing post-feeding excretion. The kinin analog is a potent agonist of the kinin receptor, and the CAPA analog an antagonist of the CAPA receptor. The use of neuropeptide mimetics is a promising approach to vector control as they can disrupt behaviours, and the effects of these neuropeptide analogs highlight their value as lead compounds, given their ability to interfere with epidemiologically-relevant behaviours.
Collapse
Affiliation(s)
- Vishal Sangha
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | - Ronald J Nachman
- Insect Control and Cotton Disease Research, Southern Plains Agricultural Research Centre, U.S Department of Agriculture, College Station, TX, 77845, USA
| | - Angela Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
9
|
Xiong C, Baker D, Pietrantonio PV. The Cattle Fever Tick, Rhipicephalus microplus, as a Model for Forward Pharmacology to Elucidate Kinin GPCR Function in the Acari. Front Physiol 2019; 10:1008. [PMID: 31447698 PMCID: PMC6692460 DOI: 10.3389/fphys.2019.01008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
The success of the acaricide amitraz, a ligand of the tick tyramine/octopamine receptor (a G protein-coupled receptor; GPCR), stimulated interest on arthropod-specific GPCRs as targets to control tick populations. This search advances tick physiology because little is known about the pharmacology of tick GPCRs, their endogenous ligands or their physiological functions. Here we explored the tick kinin receptor, a neuropeptide GPCR, and its ligands. Kinins are pleiotropic insect neuropeptides but their function in ticks is unknown. The endogenous tick kinins are unknown and their cDNAs have not been cloned in any species. In contrast, more than 271 insect kinin sequences are available in the DINeR database. To fill this gap, we cloned the kinin cDNA from the cattle fever tick, Rhipicephalus microplus, which encodes 17 predicted kinins, and verified the kinin gene structure. We predicted the kinin precursor sequences from additional seven tick species, including Ixodes scapularis. All species showed an expansion of kinin paracopies. The "kinin core" (minimal active sequence) of tick kinins FX1X2WGamide is similar to those in insects. Pro was predominant at the X2 position in tick kinins. Toward accelerating the discovery of kinin function in ticks we searched for novel synthetic receptor ligands. We developed a dual-addition assay for functional screens of small molecules and/or peptidomimetics that uses a fluorescent calcium reporter. A commercial library of fourteen small molecules antagonists of mammalian neurokinin (NK) receptors was screened using this endpoint assay. One acted as full antagonist (TKSM02) with inhibitory concentration fifty (IC50) of ∼45 μM, and three were partial antagonists. A subsequent calcium bioluminescence assay tested these four antagonists through kinetic curves and confirmed TKSM02 as full antagonist and one as partial antagonist (TKSM14). Antagonists of NK receptors displayed selectivity (>10,000-fold) on the tick kinin receptor. Three peptidomimetic ligands of the mammalian NK receptors (hemokinin 1, antagonist G, and spantide I) were tested in the bioluminescence assay but none were active. Forward approaches may accelerate discovery of kinin ligands, either as reagents for tick physiological research or as lead molecules for acaricide development, and they demonstrate that selectivity is achievable between mammalian and tick neuropeptide systems.
Collapse
Affiliation(s)
- Caixing Xiong
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Dwight Baker
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
10
|
Capriotti N, Ianowski JP, Gioino P, Ons S. The neuropeptide CCHamide2 regulates diuresis in the Chagas disease vector Rhodnius prolixus. ACTA ACUST UNITED AC 2019; 222:jeb.203000. [PMID: 31053646 DOI: 10.1242/jeb.203000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Given that hematophagous insects ingest large quantities of blood in a single meal, they must undergo a rapid post-prandial diuresis in order to maintain homeostasis. In the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae), the coordinated activity of the Malpighian tubules and anterior midgut maintains water and ion balance during the post-prandial diuresis. Three to four hours after the meal, the diuretic process finishes, and the animal enters an antidiuretic state to ensure water conservation until the next blood intake. The diuretic and antidiuretic processes are tightly regulated by serotonin and neuropeptides in this insect. In the present work, we report that the neuropeptide precursor CCHamide2 is involved in the regulation of the post-prandial diuresis in R . prolixus Our results suggest a dual effect of RhoprCCHamide2 peptide, enhancing the serotonin-induced secretion by Malpighian tubules, and inhibiting serotonin-induced absorption across the anterior midgut. To our knowledge, this is the first report of a hormone presenting opposite effects in the two osmoregulatory organs (i.e. midgut and Malpighian tubules) in insects, probably reflecting the importance of a well-tuned diuretic process in hematophagous insects during different moments after the blood meal.
Collapse
Affiliation(s)
- Natalia Capriotti
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62 (1900), 1900 La Plata, Buenos Aires, Argentina
| | - Juan P Ianowski
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Paula Gioino
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos, Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Bvd 120 y 62 (1900), 1900 La Plata, Buenos Aires, Argentina
| |
Collapse
|
11
|
Brock CM, Temeyer KB, Tidwell J, Yang Y, Blandon MA, Carreón-Camacho D, Longnecker MT, Almazán C, Pérez de León AA, Pietrantonio PV. The leucokinin-like peptide receptor from the cattle fever tick, Rhipicephalus microplus, is localized in the midgut periphery and receptor silencing with validated double-stranded RNAs causes a reproductive fitness cost. Int J Parasitol 2019; 49:287-299. [PMID: 30673587 DOI: 10.1016/j.ijpara.2018.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/31/2018] [Accepted: 11/04/2018] [Indexed: 12/25/2022]
Abstract
The cattle fever tick, Rhipicephalus microplus (Canestrini) (Acari: Ixodidae), is a one-host tick that infests primarily cattle in tropical and sub-tropical regions of the world. This species transmits deadly cattle pathogens, especially Babesia spp., for which a recombinant vaccine is not available. Therefore, disease control depends on tick vector control. Although R. microplus was eradicated in the USA, tick populations in Mexico and South America have acquired resistance to many of the applied acaricides. Recent acaricide-resistant tick reintroductions detected in the U.S. underscore the need for novel tick control methods. The octopamine and tyramine/octopamine receptors, both G protein-coupled receptors (GPCR), are believed to be the main molecular targets of the acaricide amitraz. This provides the proof of principle that investigating tick GPCRs, especially those that are invertebrate-specific, may be a feasible strategy for discovering novel targets and subsequently new anti-tick compounds. The R. microplus leucokinin-like peptide receptor (LKR), also known as the myokinin- or kinin receptor, is such a GPCR. While the receptor was previously characterized in vitro, the function of the leucokinin signaling system in ticks remains unknown. In this work, the LKR was immunolocalized to the periphery of the female midgut and silenced through RNA interference (RNAi) in females. To optimize RNAi experiments, a dual-luciferase system was developed to determine the silencing efficiency of LKR-double stranded RNA (dsRNA) constructs prior to testing those in ticks placed on cattle. This assay identified two effective dsRNAs. Silencing of the LKR with these two validated dsRNA constructs was verified by quantitative real time PCR (qRT-PCR) of female tick dissected tissues. Silencing was significant in midguts and carcasses. Silencing caused decreases in weights of egg masses and in the percentages of eggs hatched per egg mass, as well as delays in time to oviposition and egg hatching. A role of the kinin receptor in tick reproduction is apparent.
Collapse
Affiliation(s)
- Christina M Brock
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | - Jason Tidwell
- Cattle Fever Tick Research Laboratory, United States Department of Agriculture - Agricultural Research Service, 22675 N. Moorefield Rd. Building 6419 Edinburg, TX 78541-5033, USA
| | - Yunlong Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Maria A Blandon
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA
| | - Diana Carreón-Camacho
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Michael T Longnecker
- Department of Statistics, Texas A&M University, College Station, TX 77843-2475, USA
| | - Consuelo Almazán
- Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, CP87000 Victoria, Tamaulipas, Mexico
| | - Adalberto A Pérez de León
- Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, United States Department of Agriculture - Agricultural Research Service, 2700 Fredericksburg Road Kerrville, TX 78028-9184, USA
| | | |
Collapse
|
12
|
Pietrantonio PV, Xiong C, Nachman RJ, Shen Y. G protein-coupled receptors in arthropod vectors: omics and pharmacological approaches to elucidate ligand-receptor interactions and novel organismal functions. CURRENT OPINION IN INSECT SCIENCE 2018; 29:12-20. [PMID: 30551818 PMCID: PMC6296246 DOI: 10.1016/j.cois.2018.05.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
Regulation of many physiological processes in animals, certainly those controlled by neuropeptide hormones, involves G protein-coupled receptors (GPCRs). Our work focusing on endocrine regulation of diuresis and water balance in mosquitoes and ticks started in 1997 with the kinin receptor, at the dawn of the omics era. After the genomic revolution, we began work on the endocrinology of reproduction in the red imported fire ant. We will use the template of this comparative work to summarize key points about GPCRs and signaling, and emphasize the most recent developments in the pharmacology of arthropod neuropeptide GPCRs. We will discuss omics' contributions to the advancement of this field, and its influence on peptidomimetic design while emphasizing work on blood feeding arthropods.
Collapse
Affiliation(s)
- Patricia V Pietrantonio
- Department of Entomology, Texas A&M University (TAMU), College Station, TX 77843-2475, United States.
| | - Caixing Xiong
- Department of Entomology, TAMU, College Station, TX 77843-2475, United States
| | - Ronald James Nachman
- Southern Plains Agricultural Research Center, USDA-ARS, College Station, TX 77845, United States
| | - Yang Shen
- Department of Electrical and Computer Engineering, TAMU, College Station, TX 77843-3128, United States
| |
Collapse
|
13
|
Ferguson CTJ, Al-Khalaf AA, Isaac RE, Cayre OJ. pH-responsive polymer microcapsules for targeted delivery of biomaterials to the midgut of Drosophila suzukii. PLoS One 2018; 13:e0201294. [PMID: 30091982 PMCID: PMC6084892 DOI: 10.1371/journal.pone.0201294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Drosophila suzukii or spotted wing Drosophila is an economically important pest which can have a devastating impact on soft and stone fruit industries. Biological pesticides are being sought as alternatives to synthetic chemicals to control this invasive pest, but many are subject to degradation either in the environment or in the insect gut and as a result require protection. In this study we identified a sharp change in pH of the adult midgut from neutral to acidic (pH <3), which we then exploited to develop poly(2-vinylpyridine) (P2VP) microcapsules that respond to the change in midgut pH by dissolution and release of their cargo for uptake into the insect. First, we used labelled solid poly(methyl methacrylate) (PMMA) particles to show that microcapsules with a diameter less than 15 μm are readily ingested by the adult insect. To encapsulate water-soluble biological species in an aqueous continuous phase, a multiple emulsion template was used as a precursor for the synthesis of pH-responsive P2VP microcapsules with a fluorescent (FITC-dextran) cargo. The water-soluble agent was initially separated from the aqueous continuous phase by an oil barrier, which was subsequently polymerised. The P2VP microcapsules were stable at pH > 6, but underwent rapid dissolution at pH < 4.2. In vivo studies showed that the natural acidity of the midgut of D. suzukii also induced the breakdown of the responsive P2VP microcapsules to release FITC-dextran which was taken up into the body of the insect and accumulated in the renal tubules.
Collapse
Affiliation(s)
- Calum T. J. Ferguson
- School of Biological Sciences, University of Leeds, Leeds, United Kingdom
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Areej A. Al-Khalaf
- College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - R. Elwyn Isaac
- School of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Olivier J. Cayre
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
14
|
Predel R, Neupert S, Derst C, Reinhardt K, Wegener C. Neuropeptidomics of the Bed Bug Cimex lectularius. J Proteome Res 2017; 17:440-454. [PMID: 29148801 DOI: 10.1021/acs.jproteome.7b00630] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bed bug Cimex lectularius is a globally distributed human ectoparasite with fascinating biology. It has recently acquired resistance against a broad range of insecticides, causing a worldwide increase in bed bug infestations. The recent annotation of the bed bug genome revealed a full complement of neuropeptide and neuropeptide receptor genes in this species. With regard to the biology of C. lectularius, neuropeptide signaling is especially interesting because it regulates feeding, diuresis, digestion, as well as reproduction and also provides potential new targets for chemical control. To identify which neuropeptides are translated from the genome-predicted genes, we performed a comprehensive peptidomic analysis of the central nervous system of the bed bug. We identified in total 144 different peptides from 29 precursors, of which at least 67 likely present bioactive mature neuropeptides. C. lectularius corazonin and myosuppressin are unique and deviate considerably from the canonical insect consensus sequences. Several identified neuropeptides likely act as hormones, as evidenced by the occurrence of respective mass signals and immunoreactivity in neurohemal structures. Our data provide the most comprehensive peptidome of a Heteropteran species so far and in comparison suggest that a hematophageous life style does not require qualitative adaptations of the insect peptidome.
Collapse
Affiliation(s)
- Reinhard Predel
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Susanne Neupert
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Christian Derst
- Department for Biology, Institute for Zoology, University of Cologne , Zülpicher Straße 47b, D-50674 Cologne, Germany
| | - Klaus Reinhardt
- Applied Zoology, Department of Biology, Technical University of Dresden , Zellescher Weg 20b, D-01062 Dresden, Germany
| | - Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
15
|
Christie AE, Hull JJ, Richer JA, Geib SM, Tassone EE. Prediction of a peptidome for the western tarnished plant bug Lygus hesperus. Gen Comp Endocrinol 2017; 243:22-38. [PMID: 27789347 DOI: 10.1016/j.ygcen.2016.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/08/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Abstract
Many strategies for controlling insect pests require an understanding of their hormonal signaling agents, peptides being the largest and most diverse single class of these molecules. Lygus hesperus is a pest species of particular concern, as it is responsible for significant damage to a wide variety of commercially important plant crops. At present, little is known about the peptide hormones of L. hesperus. Here, transcriptomic data were used to predict a peptidome for L. hesperus. Fifty-three L. hesperus transcripts encoding peptide precursors were identified, with a subset amplified by PCR for sequence verification. The proteins deduced from these transcripts allowed for the prediction of a 119-sequence peptidome for L. hesperus. The predicted peptides include isoforms of allatostatin A, allatostatin B (AST-B), allatostatin C, allatotropin, bursicon, CCHamide, corazonin, crustacean cardioactive peptide, crustacean hyperglycemic hormone/ion transport peptide, diuretic hormone 31, GSEFLamide, insulin-like peptide, myosuppressin, neuroparsin, neuropeptide F, orcokinin, orcomyotropin, pyrokinin, short neuropeptide F, SIFamide, sulfakinin and tachykinin-related peptide. Of note were several isoforms of AST-B that possess -WX7Wamide carboxyl-termini rather than the stereotypical -WX6Wamide (e.g., KWQDMQNPGWamide), an allatotropin ending in -SARGFamide rather than -TARGFamide (GLKNGPLNSARGFamide), a GSEFLamide ending in -GTEFLamide (TVGTEFLamide), several orcokinins with PMDEIDR- rather than NFDEIDR- amino-termini (e.g., PMDEIDRAGFTHFV), and an eight rather than 12 amino acid long isoform of SIFamide (PPFNGSIFamide). Collectively, the L. hesperus peptidome predicted here provides a resource for initiating physiological investigations of peptidergic signaling in this species, including studies directed at the biological control of this agricultural pest.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| | - J Joe Hull
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Josh A Richer
- Pest Management and Biocontrol Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| | - Scott M Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K. Inouye Pacific Basin Agricultural Research Center, USDA Agricultural Research Services, Hilo, HI 96720, USA
| | - Erica E Tassone
- Plant Physiology and Genetics Research Unit, US Arid Land Agricultural Research Center, USDA Agricultural Research Services, Maricopa, AZ 85138, USA
| |
Collapse
|
16
|
Kuczer M, Czarniewska E, Majewska A, Różanowska M, Rosiński G, Lisowski M. Novel analogs of alloferon: Synthesis, conformational studies, pro-apoptotic and antiviral activity. Bioorg Chem 2016; 66:12-20. [PMID: 26986636 DOI: 10.1016/j.bioorg.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 01/26/2023]
Abstract
In this study, we report the structure-activity relationships of novel derivatives of the insect peptide alloferon (H-His-Gly-Val-Ser-Gly-His-Gly-Gln-His-Gly-Val-His-Gly-OH). The peptide structure was modified by exchanging His at position 9 or 12 for natural or non-natural amino acids. Biological properties of these peptides were determined in antiviral in vitro test against Human Herpes Virus 1 McIntrie strain (HHV-1MC) using a Vero cell line. The peptides were also evaluated for the pro-apoptotic action in vivo on hemocytes of the Tenebrio molitor beetle. Additionally, the structural properties of alloferon analogs were examined by the circular dichroism in water and methanol. It was found that most of the evaluated peptides can reduce the HHV-1 titer in Vero cells. [Ala(9)]-alloferon exhibits the strongest antiviral activity among the analyzed compounds. However, no cytotoxic activity against Vero cell line was observed for all the studied peptides. In vivo assays with hemocytes of T. molitor showed that [Lys(9)]-, [Phg(9)]-, [Lys(12)]-, and [Phe(12)]-alloferon exhibit a twofold increase in caspases activity in comparison with the native peptide. The CD conformational studies indicate that the investigated peptides seem to prefer the unordered conformation.
Collapse
Affiliation(s)
- Mariola Kuczer
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Str., 50-383 Wrocław, Poland.
| | - Elżbieta Czarniewska
- Department of Animal Physiology and Development, Institute of Experimental Biology, Adam Mickiewicz University, 89 Umultowska Str., 61-614 Poznań, Poland
| | - Anna Majewska
- Department of Medical Microbiology, Medical University of Warsaw, 5 Chałubińskiego Str., 02-005 Warsaw, Poland
| | - Maria Różanowska
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Str., 50-383 Wrocław, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Institute of Experimental Biology, Adam Mickiewicz University, 89 Umultowska Str., 61-614 Poznań, Poland
| | - Marek Lisowski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie Str., 50-383 Wrocław, Poland
| |
Collapse
|