1
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
2
|
Ugusman A, Hisam NSN, Othman NS, Anuar NNM, Hamid AA, Kumar J, Razmi MM, Aminuddin A. Pharmacological interventions for intraplaque neovascularization in atherosclerosis. Pharmacol Ther 2024; 261:108685. [PMID: 38977083 DOI: 10.1016/j.pharmthera.2024.108685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Advanced atherosclerosis is linked to plaque instability, which can result in rupture and the onset of a heart attack. Evidence gathered from human atheroma plaques indicates that intraplaque neovascularization poses a risk to plaque stability and may lead to plaque hemorrhage. Hence, targeting the neovascularization within the atheroma plaque has the potential to mitigate the plaque's vulnerability. While neovascularization has been extensively explored in the context of cancer, research on pharmacological inhibition of this phenomenon in atherosclerosis remains limited. This systematic review aimed to comprehensively assess current and emerging pharmacological interventions for inhibiting intraplaque neovascularization in preclinical settings. Electronic databases (Web of Science, PubMed, Scopus, and Ovid) were searched from January 2013 until February 1, 2024. Preclinical studies reporting the effect of any pharmacological interventions targeting intraplaque neovascularization were included. A total of 10 articles involving in vivo animal studies were eligible for inclusion, with five of them incorporating in vitro experiments to complement their in vivo findings. The pharmacological interventions studied were axitinib, ghrelin, K5, rosuvastatin, atorvastatin, 3PO, everolimus, melatonin, Si-Miao-Yong-A, and protocatechuic aldehyde. All the interventions showed a positive impact in inhibiting intraplaque neovascularization in various atherosclerotic animal models through various signaling pathways. This review provides valuable insights into pharmacological approaches to attenuate intraplaque neovascularization that could serve as a promising therapeutic avenue to enhance plaque stability.
Collapse
Affiliation(s)
- Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Nur Syahidah Nor Hisam
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia; Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nur Syakirah Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Adila A Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Maisarah Md Razmi
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
4
|
Wang L, Chen Q, Pang J. The effects and mechanisms of ghrelin upon angiogenesis in human coronary artery endothelial cells under hypoxia. Peptides 2023; 160:170921. [PMID: 36496009 DOI: 10.1016/j.peptides.2022.170921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHSR), has been found to stimulate angiogenesis both in vivo and in vitro. However, the effect of ghrelin upon angiogenesis, and the corresponding mechanisms of ghrelin therein, in human coronary artery endothelial cells (HCAECs) under hypoxia is still unknown. Our study found that ghrelin significantly increased HCAECs proliferation, migration, in vitro angiogenesis, and microvessel sprouting from the aortic ring under hypoxic conditions. The ghrelin-induced angiogenic process was accompanied by vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2) and endothelial-specific receptor tyrosine kinase (Tie2) expressions. In addition, this angiogenic effect was almost completely inhibited by Ang-2 RNAi and Tie2 RNAi. Pretreatment with the GHSR1a blocker [D-Lys3]-GHRP-6 abolished ghrelin-induced VEGF, Ang-1, Ang-2 and Tie2 expressions and in vitro angiogenesis. In conclusion, this is the first demonstration that ghrelin stimulates HCAECs in vitro angiogenesis through GHSR1a-mediated VEGF, Ang-1, Ang-2 and Tie2 pathways under hypoxic conditions. It indicated that ghrelin might play an important role in myocardial angiogenesis after ischemic injury.
Collapse
Affiliation(s)
- Li Wang
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| | - Qingwei Chen
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jun Pang
- Department of Geriatrics, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
5
|
Albuquerque CI, Tavares ER, Guido MC, Carvalho PO, Tavoni TM, Lopes NM, Silva BMDO, Jensen L, Stolf NAG, Maranhão RC. Treatment of rabbits with atherosclerosis induced by cholesterol feeding with daunorubicin associated to a lipid core nanoparticle (LDE). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Tang BY, Ge J, Wu Y, Wen J, Tang XH. The Role of ADAM17 in Inflammation-Related Atherosclerosis. J Cardiovasc Transl Res 2022; 15:1283-1296. [PMID: 35648358 DOI: 10.1007/s12265-022-10275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that poses a huge economic burden due to its extremely poor prognosis. Therefore, it is necessary to explore potential mechanisms to improve the prevention and treatment of atherosclerosis. A disintegrin and metalloprotease 17 (ADAM17) is a cell membrane-bound protein that performs a range of functions through membrane protein shedding and intracellular signaling. ADAM17-mediated inflammation has been identified to be an important contributor to atherosclerosis; however, the specific relationship between its multiple regulatory roles and the pathogenesis of atherosclerosis remains unclear. Here, we reviewed the activation, function, and regulation of ADAM17, described in detail the role of ADAM17-mediated inflammatory damage in atherosclerosis, and discussed several controversial points. We hope that these insights into ADAM17 biology will lead to rational management of atherosclerosis. ADAM17 promotes vascular inflammation in endothelial cells, smooth muscle cells, and macrophages, and regulates the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Bai-Yi Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Ge
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yang Wu
- Department of Cardiology, Third Hospital of Changsha, 176 W. Laodong Road, Changsha, 410015, Hunan, China
| | - Juan Wen
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Xiao-Hong Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
7
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
8
|
Chen X, Dong J, Jiao Q, Du X, Bi M, Jiang H. "Sibling" battle or harmony: crosstalk between nesfatin-1 and ghrelin. Cell Mol Life Sci 2022; 79:169. [PMID: 35239020 PMCID: PMC11072372 DOI: 10.1007/s00018-022-04193-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022]
Abstract
Ghrelin was first identified as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) in 1999, with the function of stimulating the release of growth hormone (GH), while nesfatin-1 was identified in 2006. Both peptides are secreted by the same kind of endocrine cells, X/A-like cells in the stomach. Compared with ghrelin, nesfatin-1 exerts opposite effects on energy metabolism, glucose metabolism, gastrointestinal functions and regulation of blood pressure, but exerts similar effects on anti-inflammation and neuroprotection. Up to now, nesfatin-1 remains as an orphan ligand because its receptor has not been identified. Several studies have shown the effects of nesfatin-1 are dependent on the receptor of ghrelin. We herein compare the effects of nesfatin-1 and ghrelin in several aspects and explore the possibility of their interactions.
Collapse
Affiliation(s)
- Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Jing Dong
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Mingxia Bi
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hong Jiang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
9
|
Cilengitide Inhibits Neovascularization in a Rabbit Abdominal Aortic Plaque Model by Impairing the VEGF Signaling. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5954757. [PMID: 34888383 PMCID: PMC8651393 DOI: 10.1155/2021/5954757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 11/28/2022]
Abstract
Background Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. We sought to investigate the effect of cilengitide on the neovascularization of abdominal aortic plaques in rabbits and explore its underlying antiangiogenic mechanism on human umbilical vein endothelial cells (HUVECs). Materials and Methods For the in vivo experiment, the abdominal aortic plaque model of rabbits was established and injected with different doses of cilengitide or saline for 14 consecutive days. Conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) were applied to measure the vascular structure and blood flow parameters. CD31 immunofluorescence staining was performed for examining neovascularization. Relative expressions of vascular endothelial growth factor (VEGF) and integrin of the plaque were determined. For in vitro experiments, HUVECs were tested for proliferation, migration, apoptosis, and tube formation in the presence of different doses of cilengitide. Relative expressions of VEGF, integrin, and Ras/ERK/AKT signaling pathways were determined for the exploration of underlying mechanism. Results CEUS showed modestly increased size and eccentricity index (EI) of plaques in the control group. Different degrees of reduced size and EI of plaques were observed in two cilengitide treatment groups. The expressions of VEGF and integrin in the plaque were inhibited after 14 days of cilengitide treatment. The neovascularization and apoptosis of the abdominal aorta were also significantly alleviated by cilengitide treatment. For in vitro experiments, cilengitide treatment was found to inhibit the proliferation, migration, and tube formation of HUVECs. However, cilengitide did not induce the apoptosis of HUVECs. A higher dose of cilengitide inhibited the mRNA expression of VEGF-A, β3, and β5, but not αV. Lastly, cilengitide treatment significantly inhibited the Ras/ERK/AKT pathway in the HUVECs. Conclusions. This study showed that cilengitide effectively inhibited the growth of plaque size by inhibiting the angiogenesis of the abdominal aortic plaques and blocking the VEGF-mediated angiogenic effect on HUVECs.
Collapse
|
10
|
Batty MJ, Chabrier G, Sheridan A, Gage MC. Metabolic Hormones Modulate Macrophage Inflammatory Responses. Cancers (Basel) 2021; 13:cancers13184661. [PMID: 34572888 PMCID: PMC8467249 DOI: 10.3390/cancers13184661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Macrophages are a type of immune cell which play an important role in the development of cancer. Obesity increases the risk of cancer and obesity also causes disruption to the normal levels of hormones that are produced to coordinate metabolism. Recent research now shows that these metabolic hormones also play important roles in macrophage immune responses and so through macrophages, disrupted metabolic hormone levels may promote cancer. This review article aims to highlight and summarise these recent findings so that the scientific community may better understand how important this new area of research is, and how these findings can be capitalised on for future scientific studies. Abstract Macrophages are phagocytotic leukocytes that play an important role in the innate immune response and have established roles in metabolic diseases and cancer progression. Increased adiposity in obese individuals leads to dysregulation of many hormones including those whose functions are to coordinate metabolism. Recent evidence suggests additional roles of these metabolic hormones in modulating macrophage inflammatory responses. In this review, we highlight key metabolic hormones and summarise their influence on the inflammatory response of macrophages and consider how, in turn, these hormones may influence the development of different cancer types through the modulation of macrophage functions.
Collapse
|
11
|
Kowara M, Cudnoch-Jedrzejewska A. Different Approaches in Therapy Aiming to Stabilize an Unstable Atherosclerotic Plaque. Int J Mol Sci 2021; 22:ijms22094354. [PMID: 33919446 PMCID: PMC8122261 DOI: 10.3390/ijms22094354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atherosclerotic plaque vulnerability is a vital clinical problem as vulnerable plaques tend to rupture, which results in atherosclerosis complications—myocardial infarctions and subsequent cardiovascular deaths. Therefore, methods aiming to stabilize such plaques are in great demand. In this brief review, the idea of atherosclerotic plaque stabilization and five main approaches—towards the regulation of metabolism, macrophages and cellular death, inflammation, reactive oxygen species, and extracellular matrix remodeling have been presented. Moreover, apart from classical approaches (targeted at the general mechanisms of plaque destabilization), there are also alternative approaches targeted either at certain plaques which have just become vulnerable or targeted at the minimization of the consequences of atherosclerotic plaque erosion or rupture. These alternative approaches have also been briefly mentioned in this review.
Collapse
|
12
|
Sun W, Xue Q, Zhao Y, Zheng J. The effects of YKL-40 on angiogenic potential of HUVECs are partly mediated by syndecan-4. Int J Med Sci 2021; 18:3759-3767. [PMID: 34790051 PMCID: PMC8579293 DOI: 10.7150/ijms.55406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/28/2021] [Indexed: 11/20/2022] Open
Abstract
Background: YKL-40, a secreted glycoprotein, has a role in promoting tumor angiogenesis through syndecan-1 receptor. Syndecan-4 is a member of syndecan family. However, the effects of YKL-40 on migration and tube formation of human umbilical vein cells (HUVECs) mediated by syndecan-4 receptor are unknown. Materials and methods: HUVECs were transfected with lentivirus encoding syndecan-4 short hairpin (sh) RNAs (lenti-synd4 shRNAs) and the efficiency of transfection was measured using qRT-PCR and western blotting. The effects of recombinant protein of YKL-40 on migration and angiogenesis of HUVECs adjusted by syndecan-4 were determined by wound healing and tube formation assay. The expressions of protein kinase Cα (PKCα) and extracellular signal regulated kinases (ERKs) 1 and 2 (ERK1/2) in HUVECs were measured using western blotting. Results: The mRNA and protein expression of syndecan-4 were significantly decreased in HUVECs successfully transfected with lenti-synd4 shRNAs. Lenti-synd4 shRNAs remarkably inhibited the migration and tube formation of HUVECs stimulated by recombinant protein of YKL-40. The levels of PKCα and ratio of p-ERK1/2 to ERK1/2 in HUVECs were also decreased by down-regulating syndecan-4. Conclusion: The effects of YKL-40 on migration and tube formation of HUVECs are partly inhibited by knock-downing syndecan-4 through suppressing PKCα and ERK1/2 signaling pathways.
Collapse
Affiliation(s)
- WeiJun Sun
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Yan Zhao
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Jianlei Zheng
- Department of Cardiology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
13
|
Circulating Exosomal miRNAs as Novel Biomarkers for Stable Coronary Artery Disease. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3593962. [PMID: 33381550 PMCID: PMC7748912 DOI: 10.1155/2020/3593962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/16/2022]
Abstract
Exosomal miRNAs are currently being explored as a novel class of biomarkers in cardiovascular diseases. However, few reports have focused on the value of circulating exosomal miRNAs as biomarkers for stable coronary artery disease (SCAD). Here, we aimed to investigate whether miRNAs involved in cardiovascular diseases in circulating exosomes could serve as novel diagnostic biomarkers for SCAD. Firstly, the serum exosomes were isolated and purified by the ExoQuick reagent and identified by transmission electron microscopy, western blot, and nanoparticle tracking analysis. Then, the purified exosomes were quantified by measuring the exosome protein concentration and calculating the total protein amount. Next, eight miRNAs involved in cardiovascular diseases, miR-192-5p, miR-148b-3p, miR-125a-3p, miR-942-5p, miR-149-5p, miR-32-5p, miR-144-3p, and miR-142-5p, were quantified in circulating exosomes from the control group (n = 20) and the SCAD group (n = 20) by quantitative real-time polymerase chain reaction (qPCR). Finally, the gene targets of the differentially expressed miRNAs were predicted, and the functions and signaling pathways of these targets were analyzed using an online database. The isolated exosomes had a bilayer membrane with a diameter of about 100 nm and expressed exosomal markers including CD63, Tsg101, and Flotillin but negatively expressed Calnexin. Both the exosome protein concentration and total protein amount exhibited no significant differences between the two groups. The qPCR assay demonstrated that among the eight miRNAs, the expression levels of miR-942-5p, miR-149-5p, and miR-32-5p in the serum exosomes from the SCAD group were significantly higher than that from the control group. And the three miRNAs for SCAD diagnosis exhibited AUC values of 0.693, 0.702, and 0.691, respectively. GO categories and signaling pathways analysis showed that some of the predictive targets of these miRNAs were involved in the pathophysiology processes of SCAD. In conclusion, our findings suggest that serum exosomal miR-942-5p, miR-149-5p, and miR-32-5p may serve as potential diagnostic biomarkers for SCAD.
Collapse
|
14
|
Atherosclerotic Pre-Conditioning Affects the Paracrine Role of Circulating Angiogenic Cells Ex-Vivo. Int J Mol Sci 2020; 21:ijms21155256. [PMID: 32722151 PMCID: PMC7432497 DOI: 10.3390/ijms21155256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
In atherosclerosis, circulating angiogenic cells (CAC), also known as early endothelial progenitor cells (eEPC), are thought to participate mainly in a paracrine fashion by promoting the recruitment of other cell populations such as late EPC, or endothelial colony-forming cells (ECFC), to the injured areas. There, ECFC replace the damaged endothelium, promoting neovascularization. However, despite their regenerative role, the number and function of EPC are severely affected under pathological conditions, being essential to further understand how these cells react to such environments in order to implement their use in regenerative cell therapies. Herein, we evaluated the effect of direct incubation ex vivo of healthy CAC with the secretome of atherosclerotic arteries. By using a quantitative proteomics approach, 194 altered proteins were identified in the secretome of pre-conditioned CAC, many of them related to inhibition of angiogenesis (e.g., endostatin, thrombospondin-1, fibulins) and cell migration. Functional assays corroborated that healthy CAC released factors enhanced ECFC angiogenesis, but, after atherosclerotic pre-conditioning, the secretome of pre-stimulated CAC negatively affected ECFC migration, as well as their ability to form tubules on a basement membrane matrix assay. Overall, we have shown here, for the first time, the effect of atherosclerotic factors over the paracrine role of CAC ex vivo. The increased release of angiogenic inhibitors by CAC in response to atherosclerotic factors induced an angiogenic switch, by blocking ECFC ability to form tubules in response to pre-conditioned CAC. Thus, we confirmed here that the angiogenic role of CAC is highly affected by the atherosclerotic environment.
Collapse
|
15
|
Liu Y, Xu XY, Shen Y, Ye CF, Hu N, Yao Q, Lv XZ, Long SL, Ren C, Lang YY, Liu YL. Ghrelin protects against obesity-induced myocardial injury by regulating the lncRNA H19/miR-29a/IGF-1 signalling axis. Exp Mol Pathol 2020; 114:104405. [PMID: 32084395 DOI: 10.1016/j.yexmp.2020.104405] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/10/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Obesity is associated with the impairment of cardiac fitness and consequent ventricular dysfunction and heart failure. Ghrelin has been largely documented to be cardioprotective against ischaemia/reperfusion injury. However, the role of ghrelin in obesity-induced myocardial injury is largely unknown. This study sought to determine the cardiac effect of ghrelin against obesity-induced injury and the underlying mechanisms. METHODS The effect of ghrelin was evaluated in a mouse model of obesity and a palmitic acid (PA)-treated cardiomyocyte cell line with or without ghrelin transfection. Gene and protein expression levels were determined by real-time PCR and western blot, respectively. Cell apoptosis was measured by flow cytometry analysis. RESULTS In the present study, we found that both a high-fat diet (HFD) and PA treatment caused myocardial injury by increasing apoptosis and the expression of inflammatory cytokines. Overexpression of ghrelin reversed the effects induced by HFD or PA treatment. Knockdown of lncRNA H19 or overexpression of miR-29a abrogated the cardioprotective effects of ghrelin against apoptosis and inflammation. We also found that IGF-1 was a target gene of miR-29a and that H19 regulated IGF-1 expression via miR-29a. Overexpression of IGF-1 partially reversed the apoptosis and inflammation promoting effects of miR-29a. CONCLUSIONS Our findings suggested that ghrelin protected against obesity-induced myocardial injury by regulating the H19/miR-29a/IGF-1 signalling axis, providing further evidence for the clinical application of ghrelin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Xin-Yue Xu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yang Shen
- Molecular medicine laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Chun-Feng Ye
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Na Hu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Qing Yao
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Xiu-Zi Lv
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Sheng-Lan Long
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Chao Ren
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China
| | - Yuan-Yuan Lang
- Medical Imaging Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| | - Yan-Ling Liu
- Department of Pediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, PR China.
| |
Collapse
|
16
|
Zhang M, Zhu R, Zhang L. Triclosan stimulates human vascular endothelial cell injury via repression of the PI3K/Akt/mTOR axis. CHEMOSPHERE 2020; 241:125077. [PMID: 31614311 DOI: 10.1016/j.chemosphere.2019.125077] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS) has potentially toxic effects on humans and animals. However, the possible roles and mechanisms of TCS in endothelial cells (ECs) are still unknown. Abnormal damage to ECs and vascular function is a critical process in various cardiovascular diseases, including coronary artery disease (CAD), atherosclerosis, stroke, and hypertension. Hence, we explored the potential toxicological roles of TCS in EC functions. Cell Counting Kit-8, apoptosis, transwell, wound healing, and tube-formation experiments were performed to evaluate the effects of TCS on human umbilical vein endothelial cell (HUVEC) function. Additionally, the levels of PI3K, Akt, and mTOR phosphorylation were measured by Western blot. The results indicated that TCS treatment suppressed HUVECs viability, migration and angiogenesis. TCS treatment increased the expression of inflammatory markers and ROS in cultured HUVECs. Moreover, TCS treatment inhibited PI3K/Akt/mTOR expression. All of these results reveal that TCS induces notable vascular injury and affects the viability, migration and angiogenic capacity of HUVECs, at least in part via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Min Zhang
- Division of Cardiology, TongRen Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Libin Zhang
- Department of Thoracic Surgery, First People's Hospital of Yunnan Province, Kunming, 650031, China
| |
Collapse
|
17
|
Zhang J, Xie T. Ghrelin inhibits cisplatin-induced MDA-MB-231 breast cancer cell apoptosis via PI3K/Akt/mTOR signaling. Exp Ther Med 2019; 19:1633-1640. [PMID: 32104214 PMCID: PMC7027091 DOI: 10.3892/etm.2019.8398] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/21/2019] [Indexed: 02/07/2023] Open
Abstract
Ghrelin is a multi-functional peptide, its role on cancer cell apoptosis remains controversial. The present study examined the effects and mechanisms of ghrelin on cisplatin-induced apoptosis in human breast cancer cells. It was identified that ghrelin inhibited apoptosis in MDA-MB-231 cells in vitro and reversed the expression of B-cell lymphoma 2 (Bcl2) and Bcl2-associated X, and cleaved caspase-3 induced by cisplatin. Furthermore, ghrelin activated the phosphoinositide 3-kinases/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway after cisplatin treatment. The effects of ghrelin on the cisplatin-induced apoptosis and PI3K/Akt/mTOR signaling were reversed by the growth hormone secretagogue receptor small interfering RNA. The present study suggests that ghrelin may serve as a novel target for cisplatin resistance and a potential indicator of cisplatin sensitivity in breast cancer treatment.
Collapse
Affiliation(s)
- Jinyu Zhang
- Department of Oncology, Medical College of Heibei University, Baoding, Hebei 071000, P.R. China
| | - Tianhao Xie
- Department of General Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| |
Collapse
|
18
|
Ren Q, Lin P, Wang Q, Zhang B, Feng L. Chronic peripheral ghrelin injection exerts antifibrotic effects by increasing growth differentiation factor 15 in rat hearts with myocardial fibrosis induced by isoproterenol. Physiol Res 2019; 69:439-450. [PMID: 31852204 DOI: 10.33549/physiolres.934183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the anti-fibrotic effects of ghrelin in isoproterenol (ISO)-induced myocardial fibrosis and the underlying mechanism. Sprague-Dawley rats were randomized to control, ISO, and ISO + ghrelin groups. ISO (2 mg/kg per day, subcutaneous) or vehicle was administered once daily for 7 days, then ghrelin (100 microg/kg per day, subcutaneous) was administered once daily for the next 3 weeks. Ghrelin treatment greatly improved the cardiac function of ISO-treated rats. Ghrelin also decreased plasma brain natriuretic peptide level and ratios of heart weight to body weight and left ventricular weight to body weight. Ghrelin significantly reduced myocardial collagen area and hydroxyproline content, accompanied by decreased mRNA levels of collagen type I and III. Furthermore, ghrelin increased plasma level of growth differentiation factor 15 (GDF15) and GDF15 mRNA and protein levels in heart tissues, which were significantly decreased with ISO alone. The phosphorylation of Akt at Ser473 and GSK-3beta at Ser9 was decreased with ISO, and ghrelin significantly reversed the downregulation of p-Akt and p-GSK-3beta. Mediated by GDF15, ghrelin could attenuate ISO-induced myocardial fibrosis via Akt-GSK-3beta signaling.
Collapse
Affiliation(s)
- Q Ren
- Geriatric Department of the Third Hospital of Hangzhou, Hangzhou, China.
| | | | | | | | | |
Collapse
|
19
|
Yang Y, Tang F, Wei F, Yang L, Kuang C, Zhang H, Deng J, Wu Q. Silencing of long non-coding RNA H19 downregulates CTCF to protect against atherosclerosis by upregulating PKD1 expression in ApoE knockout mice. Aging (Albany NY) 2019; 11:10016-10030. [PMID: 31757932 PMCID: PMC6914395 DOI: 10.18632/aging.102388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 10/21/2019] [Indexed: 12/29/2022]
Abstract
This study aimed to explore the interactions among long non-coding RNA H19, transcriptional factor CCCTC-binding factor (CTCF) and polycystic kidney disease 1 (PKD1), and to investigate its potentially regulatory effect on vulnerable plaque formation and angiogenesis of atherosclerosis. We established an atherosclerosis mouse model in ApoE knockout mice, followed by gain- and loss-of-function approaches. H19 was upregulated in aortic tissues of atherosclerosis mice, but silencing of H19 significantly inhibited atherosclerotic vulnerable plaque formation and intraplaque angiogenesis, accompanied by a downregulated expression of MMP-2, VEGF, and p53 and an upregulated expression of TIMP-1. Moreover, opposite results were found in the aortic tissues of atherosclerosis mice treated with H19 or CTCF overexpression. H19 was capable of recruiting CTCF to suppress PKD1, thus promoting atherosclerotic vulnerable plaque formation and intraplaque angiogenesis in atherosclerosis mice. The present study provides evidence that H19 recruits CTCF to downregulate the expression of PKD1, thereby promoting vulnerable plaque formation and intraplaque angiogenesis in mice with atherosclerosis.
Collapse
Affiliation(s)
- Yongyao Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Feng Tang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Fang Wei
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Long Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Chunyan Kuang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| | - Hongming Zhang
- Department of Cardiology, The General Hospital of Ji'nan Military Region, Ji'nan 250031, P. R. China
| | - Jiusheng Deng
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Qiang Wu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang 550002, P. R. China
| |
Collapse
|
20
|
Cheng XL, Ding F, Wang DP, Zhou L, Cao JM. Hexarelin attenuates atherosclerosis via inhibiting LOX-1-NF-κB signaling pathway-mediated macrophage ox-LDL uptake in ApoE -/- mice. Peptides 2019; 121:170122. [PMID: 31386895 DOI: 10.1016/j.peptides.2019.170122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/12/2022]
Abstract
Growth hormone secretagogues (GHS) have been proved to exert protective effects on the cardiovascular system, while their potential beneficial effects on macrophages in atherosclerosis (AS) are rarely been clarified. This study aimed to demonstrate whether hexarelin, a synthetic peptidyl GHS, can suppress AS progression via regulating the function of macrophages. AS was induced by chronic (3 months) feeding with high lipid diet in ApoE-/- mice. Mice were treated either with hexarelin (100 μg/kg s.c., q.d. for 3 months) (AS + Hex group) or saline (AS group). Age-matched C57BL/6 J mice were used as normal controls. AS and related signaling molecules in aortic tissues and RAW264.7 macrophages were identified with variant methods including histological staining, ELISA, western blotting, confocal microscopy and flow cytometry. AS significantly developed in ApoE-/- mice fed with high lipids diet. Hexarelin decreased serum TC, TG and LDL-c, increased serum HDL-c and attenuated the formation of atherosclerotic plaques and neointima compared with the AS group. Hexarelin decreased the aortic expressions of CD68 and LOX-1 which were elevated in the AS group. Hexarelin increased GHSR expression, suppressed ox-LDL uptake and LOX-1 expression and inhibited nuclear factor-kappa B (NF-κB) activation both in the aorta of ApoE-/- mice and in RAW264.7 macrophages. We conclude that hexarelin effectively attenuates AS progression in ApoE-/- mice by modulating circulatory lipids profile and inhibiting macrophage ox-LDL uptake via suppressing the LOX-1-NF-κB signaling pathway. The study supports the perspective of hexarelin as an anti-AS drug.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/drug therapy
- Atherosclerosis/etiology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Biological Transport/drug effects
- Cholesterol, HDL/blood
- Cholesterol, LDL/blood
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Gene Expression Regulation
- Lipoproteins, LDL/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Oligopeptides/pharmacology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/etiology
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- RAW 264.7 Cells
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Scavenger Receptors, Class E/antagonists & inhibitors
- Scavenger Receptors, Class E/genetics
- Scavenger Receptors, Class E/metabolism
- Signal Transduction
- Triglycerides/blood
Collapse
Affiliation(s)
- Xiu-Li Cheng
- Department of Clinical Laboratory, Tianjin Key Laboratory of Cerebral Vessels and Neural Degeneration, Tianjin Huanhu Hospital, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Fan Ding
- Office of Scientific R&D, Tsinghua University, Beijing, China
| | - De-Ping Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Lan Zhou
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
21
|
Vulnerable Plaque, Characteristics, Detection, and Potential Therapies. J Cardiovasc Dev Dis 2019; 6:jcdd6030026. [PMID: 31357630 PMCID: PMC6787609 DOI: 10.3390/jcdd6030026] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Plaque development and rupture are hallmarks of atherosclerotic vascular disease. Despite current therapeutic developments, there is an unmet necessity in the prevention of atherosclerotic vascular disease. It remains a challenge to determine at an early stage if atherosclerotic plaque will become unstable and vulnerable. The arrival of molecular imaging is receiving more attention, considering it allows for a better understanding of the biology of human plaque and vulnerabilities. Various plaque therapies with common goals have been tested in high-risk patients with cardiovascular disease. In this work, the process of plaque instability, along with current technologies for sensing and predicting high-risk plaques, is debated. Updates on potential novel therapeutic approaches are also summarized.
Collapse
|
22
|
LI TT, WANG ZB, LI Y, CAO F, YANG BY, KUANG HX. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin J Nat Med 2019; 17:401-412. [DOI: 10.1016/s1875-5364(19)30048-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Indexed: 02/07/2023]
|
23
|
Unacylated Ghrelin Improves Vascular Dysfunction and Attenuates Atherosclerosis during High-Fat Diet Consumption in Rodents. Int J Mol Sci 2019; 20:ijms20030499. [PMID: 30682769 PMCID: PMC6387360 DOI: 10.3390/ijms20030499] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Unacylated ghrelin (UnGhr) exerts several beneficial actions on vascular function. The aim of this study was to assess the effects of UnGhr on high-fat induced endothelial dysfunction and its underlying mechanisms. Thoracic aortas from transgenic mice, which were overexpressing UnGhr and being control fed either a standard control diet (CD) or a high-fat diet (HFD) for 16 weeks, were harvested and used for the assessment of vascular reactivity, endothelial nitric oxide synthase (eNOS) expression and activity, thiobarbituric acid reactive substances (TBARS) and glutathione levels, and aortic lipid accumulation by Oil Red O staining. Relaxations due to acetylcholine and to DEA-NONOate were reduced (p < 0.05) in the HFD control aortas compared to vessels from the CD animals. Overexpression of UnGhr prevented HFD-induced vascular dysfunction, while eNOS expression and activity were similar in all vessels. HFD-induced vascular oxidative stress was demonstrated by increased (p < 0.05) aortic TBARS and glutathione in wild type (Wt) mice; however, this was not seen in UnGhr mice. Moreover, increased (p < 0.05) HFD-induced lipid accumulation in vessels from Wt mice was prevented by UnGhr overexpression. In conclusion, chronic UnGhr overexpression results in improved vascular function and reduced plaque formation through decreased vascular oxidative stress, without affecting the eNOS pathway. This research may provide new insight into the mechanisms underlying the beneficial effects of UnGhr on the vascular dysfunction associated with obesity and the metabolic syndrome.
Collapse
|
24
|
Tetramethylpyrazine and Paeoniflorin Inhibit Oxidized LDL-Induced Angiogenesis in Human Umbilical Vein Endothelial Cells via VEGF and Notch Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3082507. [PMID: 30584451 PMCID: PMC6280302 DOI: 10.1155/2018/3082507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/06/2018] [Accepted: 11/07/2018] [Indexed: 02/01/2023]
Abstract
Atherosclerotic plaque angiogenesis is key factor in plaque instability and vulnerability, and low concentrations of oxidized low density lipoprotein (ox-LDL) promote the in vitro angiogenesis of endothelial cells and play an important role in plaque angiogenesis. Ligusticum chuanxiong Hort. and Radix Paeoniae Rubra herb pair in Chinese medicine obtains the optimum therapeutic efficacy in atherosclerosis, and their major active ingredients tetramethylpyrazine (TMP) and paeoniflorin (PF) are reported to alleviate atherosclerosis. The aim of this study was to investigate the effects of TMP and PF on ox-LDL-induced angiogenesis and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were incubated with ox-LDL and were then treated with TMP, PF, or a combination of TMP and PF. Cell proliferation, migration, tube formation, and the expression of angiogenesis-related proteins were measured. Synergism was evaluated using the combination index in cell proliferation. We found that TMP and PF attenuated the in vitro angiogenesis in ox-LDL-induced HUVECs. In addition, the combination of TMP and PF not only inhibited the ox-LDL-induced expression of CD31, vascular endothelial growth factor (VEGF), and VEGF receptor 2 (VEGFR2) but also decreased the ox-LDL-induced expression of Notch1, Jagged1, and Hes1. In summary, the combination of TMP and PF suppresses ox-LDL-induced angiogenesis in HUVECs by inhibiting both the VEGF/VEGFR2 and the Jagged1/Notch1 signaling pathways, which might contribute to the stability of plaques in atherosclerosis.
Collapse
|
25
|
Gu L, Zhang J, Zheng M, Dong G, Xu J, Zhang W, Wu Y, Yang Y, Zhu H. A potential high risk for fatty liver disease was found in mice generated after assisted reproductive techniques. J Cell Biochem 2017; 119:1899-1910. [PMID: 28815718 DOI: 10.1002/jcb.26351] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022]
Abstract
Abnormal gametogenesis and embryonic development may lead to poor health status of the offspring. The operations involved in the assisted reproductive technologies (ARTs) occur during the key stage of gametogenesis and early embryonic development. To assess the potential risk of abnormal lipid metabolism in the liver of adult ARTs offspring, two ARTs mice models derived from preimplantation genetic diagnosis (PGD group) and in vitro cultured embryos without biopsy (IVEM group) were constructed. And control mice were from in vivo naturally conceived (Normal group). The results showed that ARTs offspring had increased body weight and body fat content comparing to normal group. An increasing volume and amount of lipid droplets as well as lipid droplet fusion were found in the hepatocytes of ARTs mice, and a significantly increased liver TG content was also shown in the ARTs mice, which due to the increased TG synthesis and decreased TG transport in the liver. All the results indicated that the manipulations involved in ARTs might play an important role in the lipid accumulation of adult offspring. By analyzing the DNA methylation profiles of 7.5dpc embryos, we proposed that methylation deregulation of the genes related to liver development in ARTs embryos might contribute to the abnormal phenotype in the offspring. The study demonstrated that ARTs procedures have adverse effect on liver development which resulted in abnormal lipid metabolism and induced the potential high risk of fatty liver in adulthood.
Collapse
Affiliation(s)
- Leilei Gu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Department of Prenatal Diagnosis, Obstetrics and Gynecology Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Meimei Zheng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Guoying Dong
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jingyi Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wuyue Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yibo Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
26
|
Neale JPH, Pearson JT, Katare R, Schwenke DO. Ghrelin, MicroRNAs, and Critical Limb Ischemia: Hungering for a Novel Treatment Option. Front Endocrinol (Lausanne) 2017; 8:350. [PMID: 29326658 PMCID: PMC5733488 DOI: 10.3389/fendo.2017.00350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
Critical limb ischemia (CLI) is the most severe manifestation of peripheral artery disease. It is characterized by chronic pain at rest, skin ulcerations, and gangrene tissue loss. CLI is a highly morbid condition, resulting in a severely diminished quality of life and a significant risk of mortality. The primary goal of therapy for CLI is to restore blood flow to the affected limb, which is only possible by surgery, but is inadvisable in up to 50% of patients. This subset of patients who are not candidates for revascularisation are referred to as "no-option" patients and are the focus of investigation for novel therapeutic strategies. Angiogenesis, arteriogenesis and vasculogenesis are the processes whereby new blood vessel networks form from the pre-existing vasculature and primordial cells, respectively. In therapeutic angiogenesis, exogenous stimulants are administered to promote angiogenesis and augment limb perfusion, offering a potential treatment option for "no option" patients. However, to date, very few clinical trials of therapeutic angiogenesis in patients with CLI have reported clinically significant results, and it remains a major challenge. Ghrelin, a 28-amino acid peptide, is emerging as a potential novel therapeutic for CLI. In pre-clinical models, exogenous ghrelin has been shown to induce therapeutic angiogenesis, promote muscle regeneration, and reduce oxidative stress via the modulation of microRNAs (miRs). miRs are endogenous, small, non-coding ribonucleic acids of ~20-22 nucleotides which regulate gene expression at the post-transcriptional level by either translational inhibition or by messenger ribonucleic acid cleavage. This review focuses on the mounting evidence for the use of ghrelin as a novel therapeutic for CLI, and highlights the miRs which orchestrate these physiological events.
Collapse
Affiliation(s)
- Joshua P. H. Neale
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
| | - James T. Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
- Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, Australia
| | - Rajesh Katare
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
- *Correspondence: Rajesh Katare, ; Daryl O. Schwenke,
| | - Daryl O. Schwenke
- Department of Physiology-HeartOtago, University of Otago, Dunedin, New Zealand
- *Correspondence: Rajesh Katare, ; Daryl O. Schwenke,
| |
Collapse
|