1
|
Zhu JY, Guo L. Exercise-regulated lipolysis: Its role and mechanism in health and diseases. J Adv Res 2024:S2090-1232(24)00550-2. [PMID: 39613256 DOI: 10.1016/j.jare.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Exercise has received considerable attention because of its importance not just in regulating physiological function, but also in ameliorating multiple pathological processes. Among these processes, lipolysis may play an important role in exercise-induced benefits. It is generally accepted that active lipolysis contributes to breakdown of fats, leading to the release of free fatty acids (FFAs) that serve as an energy source for muscles and other tissues during exercise. However, the significance of lipolysis in the context of exercise has not been fully understood. This review comprehensively outlines the potential regulatory mechanisms by which exercise stimulates lipolysis. The potential roles of exercise-mediated lipolysis in various physiological and pathological processes are also summarized. Additionally, we also discussed the potential non-classical effects of key lipolytic effectors induced by exercise. This will enhance our understanding of how exercise improves lipolytic function to bring about beneficial effects, offering new insights into potential therapeutic avenues for promoting health and alleviating diseases.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438.
| |
Collapse
|
2
|
Yadav R, Swetanshu, Singh P. The molecular mechanism of obesity: The science behind natural exercise yoga and healthy diets in the treatment of obesity. Curr Probl Cardiol 2024; 49:102345. [PMID: 38103823 DOI: 10.1016/j.cpcardiol.2023.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The review centers on the scientific evidence underlying obesity, providing a detailed examination of the role of perilipin in this condition. It explores potential causes of obesity and delves into therapeutic approaches involving exercise, yoga, and herbal treatments. The paper discusses natural sources that can contribute to combating obesity and underscores the importance of exercise in a scientific context for overcoming obesity. Additionally, it includes information on herbal ingredients that aid in reducing obesity. The review also examines the impact of exercise type and intensity at various time intervals on muscle development. It elucidates triglyceride hydrolysis through different enzymes and the deposition of fatty acids in adipose tissue. The mechanisms by which alpha/beta hydrolase domain-containing protein 5 (ABHD5) and hormone-sensitive lipase (HSL) target and activate their functions are detailed. The inflammatory response in obesity is explored, encompassing inflammatory markers, lipid storage diseases, and their classification with molecular mechanisms. Furthermore, the hormonal regulation of lipolysis is elaborated upon in the review.
Collapse
Affiliation(s)
- Rajesh Yadav
- Sharda School of Allied Health Sciences, Sharda University, Greater Noida-201310, Uttar Pradesh, India; Department of Physiology, All India Institute of Medical Science, New Delhi, India
| | - Swetanshu
- Department of Zoology, Banaras Hindu University, U.P, India
| | - Pratichi Singh
- School of Biological and Life Sciences, Galgotias University, Greater Noida-203201, Uttar Pradesh, India.
| |
Collapse
|
4
|
Abstract
The global mortality, morbidity, and healthcare costs associated with cardiometabolic disease, including obesity, diabetes, hypertension, and dyslipidemia, are substantial and represent an expanding unmet medical need. Herein, we have identified a physiological role for C-type natriuretic peptide (CNP) in regulating key processes, including thermogenesis and adipogenesis, which combine to coordinate metabolic function and prevent the development of cardiometabolic disorders. This protective mechanism, which is in part mediated via an autocrine action of CNP on adipocytes, is underpinned by activation of cognate natriuretic peptide receptors (NPR)-B and NPR-C. This mechanism advances the fundamental understanding of energy homeostasis and glucose handling and offers the promise of improving the treatment of cardiometabolic disease. Thermogenesis and adipogenesis are tightly regulated mechanisms that maintain lipid homeostasis and energy balance; dysfunction of these critical processes underpins obesity and contributes to cardiometabolic disease. C-type natriuretic peptide (CNP) fulfills a multimodal protective role in the cardiovascular system governing local blood flow, angiogenesis, cardiac function, and immune cell reactivity. Herein, we investigated a parallel, preservative function for CNP in coordinating metabolic homeostasis. Global inducible CNP knockout mice exhibited reduced body weight, higher temperature, lower adiposity, and greater energy expenditure in vivo. This thermogenic phenotype was associated with increased expression of uncoupling protein-1 and preferential lipid utilization by mitochondria, a switch corroborated by a corresponding diminution of insulin secretion and glucose clearance. Complementary studies in isolated murine and human adipocytes revealed that CNP exerts these metabolic regulatory actions by inhibiting sympathetic thermogenic programming via Gi-coupled natriuretic peptide receptor (NPR)-C and reducing peroxisome proliferator-activated receptor-γ coactivator-1α expression, while concomitantly driving adipogenesis via NPR-B/protein kinase-G. Finally, we identified an association between CNP/NPR-C expression and obesity in patient samples. These findings establish a pivotal physiological role for CNP as a metabolic switch to balance energy homeostasis. Pharmacological targeting of these receptors may offer therapeutic utility in the metabolic syndrome and related cardiovascular disorders.
Collapse
|
5
|
Adipocyte lipolysis: from molecular mechanisms of regulation to disease and therapeutics. Biochem J 2020; 477:985-1008. [PMID: 32168372 DOI: 10.1042/bcj20190468] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/20/2022]
Abstract
Fatty acids (FAs) are stored safely in the form of triacylglycerol (TAG) in lipid droplet (LD) organelles by professional storage cells called adipocytes. These lipids are mobilized during adipocyte lipolysis, the fundamental process of hydrolyzing TAG to FAs for internal or systemic energy use. Our understanding of adipocyte lipolysis has greatly increased over the past 50 years from a basic enzymatic process to a dynamic regulatory one, involving the assembly and disassembly of protein complexes on the surface of LDs. These dynamic interactions are regulated by hormonal signals such as catecholamines and insulin which have opposing effects on lipolysis. Upon stimulation, patatin-like phospholipase domain containing 2 (PNPLA2)/adipocyte triglyceride lipase (ATGL), the rate limiting enzyme for TAG hydrolysis, is activated by the interaction with its co-activator, alpha/beta hydrolase domain-containing protein 5 (ABHD5), which is normally bound to perilipin 1 (PLIN1). Recently identified negative regulators of lipolysis include G0/G1 switch gene 2 (G0S2) and PNPLA3 which interact with PNPLA2 and ABHD5, respectively. This review focuses on the dynamic protein-protein interactions involved in lipolysis and discusses some of the emerging concepts in the control of lipolysis that include allosteric regulation and protein turnover. Furthermore, recent research demonstrates that many of the proteins involved in adipocyte lipolysis are multifunctional enzymes and that lipolysis can mediate homeostatic metabolic signals at both the cellular and whole-body level to promote inter-organ communication. Finally, adipocyte lipolysis is involved in various diseases such as cancer, type 2 diabetes and fatty liver disease, and targeting adipocyte lipolysis is of therapeutic interest.
Collapse
|
6
|
Michel JB. Phylogenic Determinants of Cardiovascular Frailty, Focus on Hemodynamics and Arterial Smooth Muscle Cells. Physiol Rev 2020; 100:1779-1837. [DOI: 10.1152/physrev.00022.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The evolution of the circulatory system from invertebrates to mammals has involved the passage from an open system to a closed in-parallel system via a closed in-series system, accompanying the increasing complexity and efficiency of life’s biological functions. The archaic heart enables pulsatile motion waves of hemolymph in invertebrates, and the in-series circulation in fish occurs with only an endothelium, whereas mural smooth muscle cells appear later. The present review focuses on evolution of the circulatory system. In particular, we address how and why this evolution took place from a closed, flowing, longitudinal conductance at low pressure to a flowing, highly pressurized and bifurcating arterial compartment. However, although arterial pressure was the latest acquired hemodynamic variable, the general teleonomy of the evolution of species is the differentiation of individual organ function, supported by specific fueling allowing and favoring partial metabolic autonomy. This was achieved via the establishment of an active contractile tone in resistance arteries, which permitted the regulation of blood supply to specific organ activities via its localized function-dependent inhibition (active vasodilation). The global resistance to viscous blood flow is the peripheral increase in frictional forces caused by the tonic change in arterial and arteriolar radius, which backscatter as systemic arterial blood pressure. Consequently, the arterial pressure gradient from circulating blood to the adventitial interstitium generates the unidirectional outward radial advective conductance of plasma solutes across the wall of conductance arteries. This hemodynamic evolution was accompanied by important changes in arterial wall structure, supported by smooth muscle cell functional plasticity, including contractility, matrix synthesis and proliferation, endocytosis and phagocytosis, etc. These adaptive phenotypic shifts are due to epigenetic regulation, mainly related to mechanotransduction. These paradigms actively participate in cardio-arterial pathologies such as atheroma, valve disease, heart failure, aneurysms, hypertension, and physiological aging.
Collapse
|
7
|
Benitez-Amaro A, Revuelta-López E, Bornachea O, Cedó L, Vea À, Herrero L, Roglans N, Soler-Botija C, de Gonzalo-Calvo D, Nasarre L, Camino-López S, García E, Mato E, Blanco-Vaca F, Bayes-Genis A, Sebastian D, Laguna JC, Serra D, Zorzano A, Escola-Gil JC, Llorente-Cortes V. Low-density lipoprotein receptor-related protein 1 deficiency in cardiomyocytes reduces susceptibility to insulin resistance and obesity. Metabolism 2020; 106:154191. [PMID: 32112822 DOI: 10.1016/j.metabol.2020.154191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Low-density lipoprotein receptor-related protein 1 (LRP1) plays a key role in fatty acid metabolism and glucose homeostasis. In the context of dyslipemia, LRP1 is upregulated in the heart. Our aim was to evaluate the impact of cardiomyocyte LRP1 deficiency on high fat diet (HFD)-induced cardiac and metabolic alterations, and to explore the potential mechanisms involved. METHODS We used TnT-iCre transgenic mice with thoroughly tested suitability to delete genes exclusively in cardiomyocytes to generate an experimental mouse model with conditional Lrp1 deficiency in cardiomyocytes (TNT-iCre+-LRP1flox/flox). FINDINGS Mice with Lrp1-deficient cardiomyocytes (cm-Lrp1-/-) have a normal cardiac function combined with a favorable metabolic phenotype against HFD-induced glucose intolerance and obesity. Glucose intolerance protection was linked to higher hepatic fatty acid oxidation (FAO), lower liver steatosis and increased whole-body energy expenditure. Proteomic studies of the heart revealed decreased levels of cardiac pro-atrial natriuretic peptide (pro-ANP), which was parallel to higher ANP circulating levels. cm-Lrp1-/- mice showed ANP signaling activation that was linked to increased fatty acid (FA) uptake and increased AMPK/ ACC phosphorylation in the liver. Natriuretic peptide receptor A (NPR-A) antagonist completely abolished ANP signaling and metabolic protection in cm-Lrp1-/- mice. CONCLUSIONS These results indicate that an ANP-dependent axis controlled by cardiac LRP1 levels modulates AMPK activity in the liver, energy homeostasis and whole-body metabolism.
Collapse
Affiliation(s)
- Aleyda Benitez-Amaro
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Elena Revuelta-López
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Bornachea
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Lídia Cedó
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Àngela Vea
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Nuria Roglans
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain
| | - Carolina Soler-Botija
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - David de Gonzalo-Calvo
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Nasarre
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Sandra Camino-López
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain
| | - Eduardo García
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Eugenia Mato
- CIBER Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Blanco-Vaca
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica, Biología Molecular i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antoni Bayes-Genis
- Heart Failure and Cardiac Regeneration (ICREC) Research Program, Health Sciences Research Institute Germans Trias i Pujol (IGTP), Badalona, Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain; Cardiology Service and Heart Failure Unit, Hospital Universitari Germans Trias i Pujol, Badalona, Spain, Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - David Sebastian
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Carles Laguna
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Zorzano
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Joan Carles Escola-Gil
- Metabolic Basis of Cardiovascular Risk, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vicenta Llorente-Cortes
- Institute of Biochemical Research of Barcelona (IIBB)-Spanish National Research Council (CSIC), Barcelona, Spain; Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|