1
|
Liu Y, Jiang M, Li Y, Chen P, Chen X. Advances in the study of ELABELA in renal physiological functions and related diseases. Front Pharmacol 2023; 14:1276488. [PMID: 38026926 PMCID: PMC10644379 DOI: 10.3389/fphar.2023.1276488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
ELABELA (ELA), also known as Toddler or Apela, is a novel endogenous ligand of the angiotensin receptor AT1-related receptor protein (APJ). ELA is highly expressed in human embryonic, cardiac, and renal tissues and involves various biological functions, such as embryonic development, blood circulation regulation, and maintaining body fluid homeostasis. ELA is also closely related to the occurrence and development of acute kidney injury, hypertensive kidney damage, diabetic nephropathy, renal tumors, and other diseases. Understanding the physiological role of ELA and its mechanism of action in kidney-related diseases would provide new targets and directions for the clinical treatment of kidney diseases.
Collapse
Affiliation(s)
- YuRong Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - MingChun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Yue Li
- Department of Anatomy, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - Peng Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| | - XiaoYu Chen
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, Shandong, China
| |
Collapse
|
2
|
Murali S, Aradhyam GK. Structure-function relationship and physiological role of apelin and its G protein coupled receptor. Biophys Rev 2023; 15:127-143. [PMID: 36919024 PMCID: PMC9995629 DOI: 10.1007/s12551-023-01044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Apelin receptor (APJR) is a class A peptide (apelin) binding G protein-coupled receptor (GPCR) that plays a significant role in regulating blood pressure, cardiac output, and maintenance of fluid homeostasis. It is activated by a wide range of endogenous peptide isoforms of apelin and elabela. The apelin peptide isoforms contain distinct structural features that aid in ligand recognition and activation of the receptor. Site-directed mutagenesis and structure-based studies have revealed the involvement of extracellular and transmembrane regions of the receptor in binding to the peptide isoforms. The structural features of APJR activation of the receptor as well as mediating G-protein and β-arrestin-mediated signaling are delineated by multiple mutagenesis studies. There is increasing evidence that the structural requirements of APJR to activate G-proteins and β-arrestins are different, leading to biased signaling. APJR also responds to mechanical stimuli in a ligand-independent manner. A multitude of studies has focused on developing both peptide and non-peptide agonists and antagonists specific to APJR. Apelin/elabela-activated APJR orchestrates major signaling pathways such as extracellular signal-regulated kinase (ERKs), protein kinase B (PKB/Akt), and p70S. This review focuses on the structural and functional characteristics of apelin, elabela, APJR, and their interactions involved in the binding and activation of the downstream signaling cascade. We also focus on the diverse signaling profile of APJR and its ligands and their involvement in various physiological systems.
Collapse
Affiliation(s)
- Subhashree Murali
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biological Sciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
3
|
Chapman FA, Nyimanu D, Maguire JJ, Davenport AP, Newby DE, Dhaun N. The therapeutic potential of apelin in kidney disease. Nat Rev Nephrol 2021; 17:840-853. [PMID: 34389827 PMCID: PMC8361827 DOI: 10.1038/s41581-021-00461-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.
Collapse
Affiliation(s)
- Fiona A Chapman
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Duuamene Nyimanu
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Janet J Maguire
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Division of Experimental Medicine and Immunotherapeutics, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Cambridge, UK
| | - David E Newby
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, The Queen's Medical Research Institute, Edinburgh, UK.
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, UK.
| |
Collapse
|
4
|
Nyimanu D, Kay RG, Kuc RE, Brown AJH, Gribble FM, Maguire JJ, Davenport AP. In vitro metabolism of synthetic Elabela/Toddler (ELA-32) peptide in human plasma and kidney homogenates analyzed with mass spectrometry and validation of endogenous peptide quantification in tissues by ELISA. Peptides 2021; 145:170642. [PMID: 34455010 PMCID: PMC8484864 DOI: 10.1016/j.peptides.2021.170642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Elabela/Toddler (ELA) is a novel endogenous ligand of the apelin receptor, whose signalling has emerged as a therapeutic target, for example, in cardiovascular disease and cancer. Shorter forms of ELA-32 have been predicted, including ELA-21 and ELA-11, but metabolism and stability of ELA-32 in humans is poorly understood. We, therefore, developed an LC-MS/MS assay to identify ELA-32 metabolites in human plasma and tissues. METHOD Human kidney homogenates or plasma were incubated at 37 °C with ELA-32 and aliquots withdrawn over 2-4 h into guanidine hydrochloride. Proteins were precipitated and supernatant solid-phase extracted. Peptides were extracted from coronary artery, brain and kidney by immunoprecipitation or solid-phase extraction following acidification. All samples were reduced and alkylated before analysis on an Orbitrap mass spectrometer in high and nano flow mode. RESULTS The half-life of ELA-32 in plasma and kidney were 47.2 ± 5.7 min and 44.2 ± 3 s, respectively. Using PEAKS Studio and manual data analysis, the most important fragments of ELA-32 with potential biological activity identified were ELA-11, ELA-16, ELA-19 and ELA-20. The corresponding fragments resulting from the loss of C-terminal amino acids were also identified. Endogenous levels of these peptides could not be measured, as ELA peptides are prone to oxidation and poor chromatographic peaks. CONCLUSIONS The relatively long ELA plasma half-life observed and identification of a potentially more stable fragment, ELA-16, may suggest that ELA could be a better tool compound and novel template for the development of new drugs acting at the apelin receptor.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
| | - Richard G Kay
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK; Sosei Heptares, Granta Park, Cambridge, UK; Metabolic Research Laboratories, Institute of Metabolic Sciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
| | | | - Fiona M Gribble
- Metabolic Research Laboratories, Institute of Metabolic Sciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK.
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK.
| |
Collapse
|
5
|
Castan-Laurell I, Dray C, Valet P. The therapeutic potentials of apelin in obesity-associated diseases. Mol Cell Endocrinol 2021; 529:111278. [PMID: 33838166 DOI: 10.1016/j.mce.2021.111278] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/26/2021] [Accepted: 04/02/2021] [Indexed: 01/23/2023]
Abstract
Apelin, a peptide with several active isoforms ranging from 36 to 12 amino acids and its receptor APJ, a G-protein-coupled receptor, are widely distributed. However, apelin has emerged as an adipokine more than fifteen years ago, integrating the field of inter-organs interactions. The apelin/APJ system plays important roles in several physiological functions both in rodent and humans such as fluid homeostasis, cardiovascular physiology, angiogenesis, energy metabolism. Thus the apelin/APJ system has generated great interest as a potential therapeutic target in different pathologies. The present review will consider the effects of apelin in metabolic diseases such as obesity and diabetes with a focus on diabetic cardiomyopathy among the complications associated with diabetes and APJ agonists or antagonists of interest in these diseases.
Collapse
Affiliation(s)
- I Castan-Laurell
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France.
| | - C Dray
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France
| | - P Valet
- Restore UMR1301 Inserm, 5070 CNRS, Université Paul Sabatier, France
| |
Collapse
|
6
|
A network map of apelin-mediated signaling. J Cell Commun Signal 2021; 16:137-143. [PMID: 33797707 DOI: 10.1007/s12079-021-00614-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The apelin receptor (APLNR) is a class A (rhodopsin-like) G-protein coupled receptor with a wide distribution throughout the human body. Activation of the apelin/APLNR system regulates AMPK/PI3K/AKT/mTOR and RAF/ERK1/2 mediated signaling pathways. APLNR activation orchestrates several downstream signaling cascades, which play diverse roles in physiological effects, including effects upon vasoconstriction, heart muscle contractility, energy metabolism regulation, and fluid homeostasis angiogenesis. We consolidated a network map of the APLNR signaling map owing to its biomedical importance. The curation of literature data pertaining to the APLNR system was performed manually by the NetPath criteria. The described apelin receptor signaling map comprises 35 activation/inhibition events, 38 catalysis events, 4 molecular associations, 62 gene regulation events, 113 protein expression types, and 4 protein translocation events. The APLNR signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5067 ).
Collapse
|
7
|
Coquerel D, Delile E, Dumont L, Chagnon F, Murza A, Sainsily X, Salvail D, Sarret P, Marsault E, Auger-Messier M, Lesur O. Gαi-biased apelin analog protects against isoproterenol-induced myocardial dysfunction in rats. Am J Physiol Heart Circ Physiol 2021; 320:H1646-H1656. [PMID: 33635165 DOI: 10.1152/ajpheart.00688.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022]
Abstract
Apelin receptor (APJ) activation by apelin-13 (APLN-13) engages both Gαi proteins and β-arrestins, stimulating distinct intracellular pathways and triggering physiological responses like enhanced cardiac contractility. Substituting the C-terminal phenylalanine of APLN-13 with α-methyl-l-phenylalanine [(l-α-Me)Phe] or p-benzoyl-l-phenylalanine (Bpa) generates biased analogs inducing APJ functional selectivity toward Gαi proteins. Using these original analogs, we proposed to investigate how the canonical Gαi signaling of APJ regulates the cardiac function and to assess their therapeutic impact in a rat model of isoproterenol-induced myocardial dysfunction. In vivo and ex vivo infusions of either Bpa or (l-α-Me)Phe analogs failed to enhance rats' left ventricular (LV) contractility compared with APLN-13. Inhibition of Gαi with pertussis toxin injection optimized the cardiotropic effect of APLN-13 and revealed the inotropic impact of Bpa. Moreover, both APLN-13 and Bpa efficiently limited the forskolin-induced and PKA-dependent phosphorylation of phospholamban at the Ser16 in neonatal rat ventricular myocytes. However, only Bpa significantly reduced the inotropic effect of forskolin infusion in isolated-perfused heart, highlighting its efficient bias toward Gαi. Compared with APLN-13, Bpa also markedly improved isoproterenol-induced myocardial systolic and diastolic dysfunctions. Bpa prevented cardiac weight increase, normalized both ANP and BNP mRNA expressions, and decreased LV fibrosis in isoproterenol-treated rats. Our results show that APJ-driven Gαi/adenylyl cyclase signaling is functional in cardiomyocytes and acts as negative feedback of the APLN-APJ-dependent inotropic response. Biased APJ signaling toward Gαi over the β-arrestin pathway offers a promising strategy in the treatment of cardiovascular diseases related to myocardial hypertrophy and high catecholamine levels.NEW & NOTEWORTHY By using more potent Gαi-biased APJ agonists that strongly inhibit cAMP production, these data point to the negative inotropic effect of APJ-mediated Gαi signaling in the heart and highlight the potential protective impact of APJ-dependent Gαi signaling in cardiovascular diseases associated with left ventricular hypertrophy.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Animals
- Apelin/analogs & derivatives
- Apelin/pharmacology
- Apelin Receptors/agonists
- Apelin Receptors/metabolism
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- GTP-Binding Protein alpha Subunits/metabolism
- Intercellular Signaling Peptides and Proteins/pharmacology
- Isolated Heart Preparation
- Isoproterenol
- Ligands
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Phosphorylation
- Rats, Sprague-Dawley
- Signal Transduction
- Ventricular Dysfunction, Left/chemically induced
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Function, Left/drug effects
- Rats
Collapse
Affiliation(s)
- David Coquerel
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eugénie Delile
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Lauralyne Dumont
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Frédéric Chagnon
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexandre Murza
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Xavier Sainsily
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Dany Salvail
- IPS Therapeutique Inc., Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric Marsault
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mannix Auger-Messier
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Olivier Lesur
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
8
|
Jiang Y, Yan M, Wang C, Wang Q, Chen X, Zhang R, Wan L, Ji B, Dong B, Wang H, Chen J. The Effects of Apelin and Elabela Ligands on Apelin Receptor Distinct Signaling Profiles. Front Pharmacol 2021; 12:630548. [PMID: 33746758 PMCID: PMC7970304 DOI: 10.3389/fphar.2021.630548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Apelin and Elabela are endogenous peptide ligands for Apelin receptor (APJ), a widely expressed G protein-coupled receptor. They constitute a spatiotemporal dual ligand system to control APJ signal transduction and function. We investigated the effects of Apelin-13, pGlu1-apelin-13, Apelin-17, Apelin-36, Elabela-21 and Elabela-32 peptides on APJ signal transduction. Whether different ligands are biased to different APJ mediated signal transduction pathways was studied. We observed the different changes of G protein dependent and β-arrestin dependent signaling pathways after APJ was activated by six peptide ligands. We demonstrated that stimulation with APJ ligands resulted in dose-dependent increases in both G protein dependent [cyclic AMP (cAMP), Ca2+ mobilization, and the early phase extracellular related kinase (ERK) activation] and β-arrestin dependent [GRKs, β-arrestin 1, β-arrestin 2, and β2 subunit of the clathrin adaptor AP2] signaling pathways. However, the ligands exhibited distinct signaling profiles. Elabela-32 showed a >1000-fold bias to the β-statin-dependent signaling pathway. These data provide that Apelin-17 was biased toward β-arrestin dependent signaling. Eabela-21 and pGlu1-Apelin-13 exhibited very distinct activities on the G protein dependent pathway. The activity profiles of these ligands could be valuable for the development of drugs with high selectivity for specific APJ downstream signaling pathways.
Collapse
Affiliation(s)
- Yunlu Jiang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University, Shandong, China
| | - Chunmei Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Qinqin Wang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Xiaoyu Chen
- Department of Physiology, Shandong First Medical University, Shandong, China
| | - Rumin Zhang
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Lei Wan
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bingyuan Ji
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Huiyun Wang
- School of Pharmacy, Jining Medical University, Shandong, China
| | - Jing Chen
- Neurobiology Key Laboratory of Jining Medical University in Colleges of Shandong, Jining Medical University, Jining, China.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Girault-Sotias PE, Gerbier R, Flahault A, de Mota N, Llorens-Cortes C. Apelin and Vasopressin: The Yin and Yang of Water Balance. Front Endocrinol (Lausanne) 2021; 12:735515. [PMID: 34880830 PMCID: PMC8645901 DOI: 10.3389/fendo.2021.735515] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Apelin, a (neuro)vasoactive peptide, plays a prominent role in controlling body fluid homeostasis and cardiovascular functions. Experimental data performed in rodents have shown that apelin has an aquaretic effect via its central and renal actions. In the brain, apelin inhibits the phasic electrical activity of vasopressinergic neurons and the release of vasopressin from the posterior pituitary into the bloodstream and in the kidney, apelin regulates renal microcirculation and counteracts in the collecting duct, the antidiuretic effect of vasopressin occurring via the vasopressin receptor type 2. In humans and rodents, if plasma osmolality is increased by hypertonic saline infusion/water deprivation or decreased by water loading, plasma vasopressin and apelin are conversely regulated to maintain body fluid homeostasis. In patients with the syndrome of inappropriate antidiuresis, in which vasopressin hypersecretion leads to hyponatremia, the balance between apelin and vasopressin is significantly altered. In order to re-establish the correct balance, a metabolically stable apelin-17 analog, LIT01-196, was developed, to overcome the problem of the very short half-life (in the minute range) of apelin in vivo. In a rat experimental model of vasopressin-induced hyponatremia, subcutaneously (s.c.) administered LIT01-196 blocks the antidiuretic effect of vasopressin and the vasopressin-induced increase in urinary osmolality, and induces a progressive improvement in hyponatremia, suggesting that apelin receptor activation constitutes an original approach for hyponatremia treatment.
Collapse
|
10
|
Nyimanu D, Kay RG, Sulentic P, Kuc RE, Ambery P, Jermutus L, Reimann F, Gribble FM, Cheriyan J, Maguire JJ, Davenport AP. Development and validation of an LC-MS/MS method for detection and quantification of in vivo derived metabolites of [Pyr 1]apelin-13 in humans. Sci Rep 2019; 9:19934. [PMID: 31882594 PMCID: PMC6934825 DOI: 10.1038/s41598-019-56157-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/22/2019] [Indexed: 12/15/2022] Open
Abstract
[Pyr1]apelin-13 is the predominant apelin peptide isoform in the human cardiovascular system and plasma. To date, few studies have investigated [Pyr1]apelin-13 metabolism in vivo in rats with no studies examining its stability in humans. We therefore aimed to develop an LC-MS/MS method for detection and quantification of intact [Pyr1]apelin-13 and have used this method to identify the metabolites generated in vivo in humans. [Pyr1]apelin-13 (135 nmol/min) was infused into six healthy human volunteers for 120 minutes and blood collected at time 0 and 120 minutes after infusion. Plasma was extracted in the presence of guanidine hydrochloride and analysed by LC-MS/MS. Here we report a highly sensitive, robust and reproducible method for quantification of intact [Pyr1]apelin-13 and its metabolites in human plasma. Using this method, we showed that the circulating concentration of intact peptide was 58.3 ± 10.5 ng/ml after 120 minutes infusion. We demonstrated for the first time that in humans, [Pyr1]apelin-13 was cleaved from both termini but the C-terminal was more susceptible to cleavage. Consequently, of the metabolites identified, [Pyr1]apelin-13(1-12), [Pyr1]apelin-13(1-10) and [Pyr1]apelin-13(1-6) were the most abundant. These data suggest that apelin peptides designed for use as cardiovascular therapeutics, should include modifications that minimise C-terminal cleavage.
Collapse
Affiliation(s)
- Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Richard G Kay
- Metabolic Research Laboratories, Institute of Metabolic Sciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Philip Ambery
- Late-stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lutz Jermutus
- Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Frank Reimann
- Metabolic Research Laboratories, Institute of Metabolic Sciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Fiona M Gribble
- Metabolic Research Laboratories, Institute of Metabolic Sciences, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Joseph Cheriyan
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK.
| |
Collapse
|