1
|
Liu L, Chen C, Dong Y, Cheng Y, You C, Wang S, Ma H, Li Y. Insulin activates LC-PUFA biosynthesis of hepatocytes by regulating the PI3K/Akt/mTOR/Srebp1 pathway in teleost Siganus canaliculatus. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110734. [PMID: 35321854 DOI: 10.1016/j.cbpb.2022.110734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 11/30/2022]
Abstract
Insulin is well known an important metabolic regulator in glucose and lipid metabolism. It has been proved to activate long-chain (≥ C20) polyunsaturated fatty acids (LC-PUFA) biosynthesis in mammals, but little is known about such a role in fish. To explore the effects and molecular mechanisms of insulin in fish LC-PUFA biosynthesis, we treated the rabbitfish S. canaliculatus hepatocyte line (SCHL) cells with 65 nM insulin for 12 h, and the results showed that the mRNA levels of genes encoding the key enzymes and transcription factor involved in rabbitfish LC-PUFA biosynthesis such as Δ6Δ5 fads2, elovl5 and srebp1, as well as those of PI3K pathway genes including pdk1, akt2 and mtor increased significantly. Moreover, SCHL cells treated with different PI3K/Akt pathway inhibitors (LY294002, Wortmannin, AKTi-1/2) alone or combined with insulin decreased the mRNA levels of PI3K/Akt/mTOR downstream signaling genes, including Δ6Δ5 fads2, Δ4 fads2, elovl5, elovl4 and srebp1. While PI3K/Akt agonists (740 Y-P, IGF-1, SC-79) had the opposite results. The results of fatty acid composition analysis of hepatocytes showed that insulin stimulation increased the Δ6Δ5 Fads2-dependent PUFA desaturation indexes, while Elovl5-dependent PUFA elongation indexes had upward trends, and consequently LC-PUFA contents increased. Taken together, these results indicated that insulin activated LC-PUFA biosynthesis probably through PI3K/Akt/mTOR/Srebp1 pathway in S. canaliculatus hepatocytes.
Collapse
Affiliation(s)
- Lijie Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Cuiying Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yewei Dong
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Yu Cheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Cuihong You
- College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Hongyu Ma
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China.
| | - Yuanyou Li
- School of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Wang B, Li J, Liu L, Song G. Insulin sensitivity in the aged heart is improved by down-regulation of KAT7 in vivo and in vitro. Cell Cycle 2022; 21:276-288. [PMID: 34989320 PMCID: PMC8855855 DOI: 10.1080/15384101.2021.2018811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insulin has an important regulatory effect on the heart, and the important regulatory effect of insulin on the heart is the regulation of substrate utilization. Studies have shown that aging is closely related to insulin resistance, and aging is thought to be one of the underlying causes of insulin resistance. Additionally, chronic inflammation is a major risk factor for aging and aging-related diseases. How to delay or reverse insulin resistance caused by aging is an important scientific problem. In the current study, we used cardiomyocyte cell lines and isolated heart cells as an in vitro model, and aged mice as in vivo model to study the effect of KAT7 on insulin resistance, and results showed that knockdown or inhibiting KAT7 can significantly increase the insulin sensitivity in vivo and in vitro. In addition, the knockdown of KAT7 could reduce inflammation and oxidative stress caused by aging. These findings indicate that KAT7 can be used as one of the potential targets for the treatment of insulin resistance caused by aging.
Collapse
Affiliation(s)
- Bin Wang
- Department of Internal Medicine-Cardiovascular, Taizhou People’s Hospital, Taizhou, Jiangsu, China
| | - Jianmin Li
- Department of Internal Medicine-Cardiovascular, Taizhou People’s Hospital, Taizhou, Jiangsu, China
| | - Ling Liu
- Department of Internal Medicine-Cardiovascular, Taizhou People’s Hospital, Taizhou, Jiangsu, China
| | - Guixian Song
- Department of Internal Medicine-Cardiovascular, Taizhou People’s Hospital, Taizhou, Jiangsu, China,CONTACT Guixian Song Department of Internal Medicine-Cardiovascular, Taizhou People’s Hospital, 210 Yingchun Road, Hailing District, Taizhou, Jiangsu225300, China
| |
Collapse
|
3
|
Gomathi K, Haribabu J, Saranya S, Gayathri D, Jeyalakshmi K, Sendilvelan S, Echeverria C, Karvembu R. Effective inhibition of insulin amyloid fibril aggregation by nickel(II) complexes containing heterocyclic thiosemicarbazones. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:1069-1081. [PMID: 34455461 DOI: 10.1007/s00249-021-01566-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
The sensitivity of protein molecular structures makes them susceptible to aggregation in conditions unfavorable for the maintenance of their native folds. The aggregation of proteins leads to many disorders, but the inhibition of amyloid fibril formation using metal-containing small molecules is gaining popularity. Herein we report the effect of nickel(II) complexes (N1, N2, N3, and N4) bearing thiosemicarbazones on the inhibition of amyloid fibril formation by insulin. The interactions of the complexes with amyloid fibrils were investigated using various biophysical techniques, including light scattering, intrinsic fluorescence assay, thioflavin T (ThT) assay, and Fourier transform-infrared spectroscopy. The results revealed that the phenyl-substituted N3 was an efficient inhibitor of amyloid fibril formation and maintained the insulin in its native structure despite conditions promoting fibrillation. Nickel(II) complexes containing indole based thiosemicarbazones were efficient in inhibiting the amyloid fibril formation and maintaining the insulin in its native structure in unfavorable conditions.
Collapse
Affiliation(s)
- Kannayiram Gomathi
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India.
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.,Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772, Copiapo, Chile
| | - Sivaraj Saranya
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India.,Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Dasararaju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Kumaramangalam Jeyalakshmi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.,Department of Chemistry, M. Kumarasamy College of Engineering, Karur, 639113, India
| | - Subramanian Sendilvelan
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772, Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.
| |
Collapse
|