1
|
Olivares-Costa M, Fabio MC, De la Fuente-Ortega E, Haeger PA, Pautassi R. New therapeutics for the prevention or amelioration of fetal alcohol spectrum disorders: a narrative review of the preclinical literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2024:1-22. [PMID: 39023419 DOI: 10.1080/00952990.2024.2361442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/26/2024] [Indexed: 07/20/2024]
Abstract
Background: Ethanol consumption during pregnancy induces enduring detrimental effects in the offspring, manifesting as a spectrum of symptoms collectively termed as Fetal Alcohol Spectrum Disorders (FASD). Presently, there is a scarcity of treatments for FASD.Objectives: To analyze current literature, emphasizing evidence derived from preclinical models, that could potentially inform therapeutic interventions for FASD.Methods: A narrative review was conducted focusing on four prospective treatments: nutritional supplements, antioxidants, anti-inflammatory compounds and environmental enrichment. The review also highlights innovative therapeutic strategies applied during early (e.g. folate administration, postnatal days 4-9) or late (e.g. NOX2 inhibitors given after weaning) postnatal stages that resulted in significant improvements in behavioral responses during adolescence (a critical period marked by the emergence of mental health issues in humans).Results: Our findings underscore the value of treatments centered around nutritional supplementation or environmental enrichment, aimed at mitigating oxidative stress and inflammation, implying shared mechanisms in FASD pathogenesis. Moreover, the review spotlights emerging evidence pertaining to the involvement of novel molecular components with potential pharmacological targets (such as NOX2, MCP1/CCR2, PPARJ, and PDE1).Conclusions: Preclinical studies have identified oxidative imbalance and neuroinflammation as relevant pathological mechanisms induced by prenatal ethanol exposure. The relevance of these mechanisms, which exhibit positive feedback loop mechanisms, appear to peak during early development and decreases in adulthood. These findings provide a framework for the future development of therapeutic avenues in the development of specific clinical treatments for FASD.
Collapse
Affiliation(s)
- Montserrat Olivares-Costa
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - María Carolina Fabio
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| | - Erwin De la Fuente-Ortega
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Paola A Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile
| | - Ricardo Pautassi
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Coquimbo, Chile
| |
Collapse
|
2
|
Patko E, Szabo E, Toth D, Tornoczky T, Bosnyak I, Vaczy A, Atlasz T, Reglodi D. Distribution of PACAP and PAC1 Receptor in the Human Eye. J Mol Neurosci 2022; 72:2176-2187. [PMID: 35253081 PMCID: PMC9726800 DOI: 10.1007/s12031-022-01985-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution and diverse biological functions. Several studies show that PACAP has strong cytoprotective effects mediated mostly through its specific PAC1 receptor (PAC1-R) and it plays important roles in several pathological conditions. Its distribution and altered expression are known in various human tissues, but there is no descriptive data about PACAP and its receptors in the human eyebulb. Since PACAP38 is the dominant form of the naturally occurring PACAP, our aim was to investigate the distribution of PACAP38-like immunoreactivity in the human eye and to describe the presence of PAC1-R. Semiquantitative evaluation was performed after routine histology and immunohistochemical labeling on human eye sections. Our results showed high level of immunopositivity in the corneal epithelium and endothelium. Within the vascular layer, the iris and the ciliary body had strong immunopositivity for both PACAP and PAC1-R. Several layers of the retina showed immunoreactivity for PACAP and PAC1-R, but the ganglion cell layer had a special pattern in the immunolabeling. Labeling was observed in the neuropil within the optic nerve in both cases and glial cells displayed immunoreactivity for PAC1-R. In summary, our study indicates the widespread occurrence of PACAP and its specific receptor in the human eye, implying that the results from in vitro and animal studies have translational value and most probably are also present in the human eye.
Collapse
Affiliation(s)
- Evelin Patko
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Edina Szabo
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Denes Toth
- Department of Forensic Medicine, Medical School, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Tornoczky
- Department of Pathology, Medical School and Clinical Center, University of Pecs, 7624, Pecs, Hungary
| | - Inez Bosnyak
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
| | - Tamas Atlasz
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary.
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary.
- Department of Sportbiology, University of Pecs, 7624, Pecs, Hungary.
| | - Dora Reglodi
- Department of Anatomy, Medical School, MTA-PTE PACAP Research Team, University of Pecs, 7624, Pecs, Hungary
- Szentagothai Research Center, Medical School, University of Pecs, 7624, Pecs, Hungary
| |
Collapse
|