1
|
Suhardi VJ, Oktarina A, Hammad M, Niu Y, Li Q, Thomson A, Lopez J, McCormick J, Ayturk UM, Greenblatt MB, Ivashkiv LB, Bostrom MPG, Yang X. Prevention and treatment of peri-implant fibrosis by functionally inhibiting skeletal cells expressing the leptin receptor. Nat Biomed Eng 2024; 8:1285-1307. [PMID: 39085645 DOI: 10.1038/s41551-024-01238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The cellular and molecular mediators of peri-implant fibrosis-a most common reason for implant failure and for surgical revision after the replacement of a prosthetic joint-remain unclear. Here we show that peri-implant fibrotic tissue in mice and humans is largely composed of a specific population of skeletal cells expressing the leptin receptor (LEPR) and that these cells are necessary and sufficient to generate and maintain peri-implant fibrotic tissue. In a mouse model of tibial implantation and osseointegration that mimics partial knee arthroplasty, genetic ablation of LEPR+ cells prevented peri-implant fibrosis and the implantation of LEPR+ cells from peri-implant fibrotic tissue was sufficient to induce fibrosis in secondary hosts. Conditional deletion of the adhesion G-protein-coupled receptor F5 (ADGRF5) in LEPR+ cells attenuated peri-implant fibrosis while augmenting peri-implant bone formation, and ADGRF5 inhibition by the intra-articular or systemic administration of neutralizing anti-ADGRF5 in the mice prevented and reversed peri-implant fibrosis. Pharmaceutical agents that inhibit the ADGRF5 pathway in LEPR+ cells may be used to prevent and treat peri-implant fibrosis.
Collapse
Affiliation(s)
- Vincentius Jeremy Suhardi
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | | | - Mohammed Hammad
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Yingzhen Niu
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Joint Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qingdian Li
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedics, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, P. R. China
| | - Andrew Thomson
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Juan Lopez
- Research Institute, Hospital for Special Surgery, New York, NY, USA
| | - Jason McCormick
- Flow Cytometry Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Ugur M Ayturk
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Matthew B Greenblatt
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | - Mathias P G Bostrom
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, NY, USA
- Research Institute, Hospital for Special Surgery, New York, NY, USA
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Xu Yang
- Research Institute, Hospital for Special Surgery, New York, NY, USA.
- Department of Orthopedic Surgery, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Butenko S, Nagalla RR, Guerrero-Juarez CF, Palomba F, David LM, Nguyen RQ, Gay D, Almet AA, Digman MA, Nie Q, Scumpia PO, Plikus MV, Liu WF. Hydrogel crosslinking modulates macrophages, fibroblasts, and their communication, during wound healing. Nat Commun 2024; 15:6820. [PMID: 39122702 PMCID: PMC11315930 DOI: 10.1038/s41467-024-50072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024] Open
Abstract
Biomaterial wound dressings, such as hydrogels, interact with host cells to regulate tissue repair. This study investigates how crosslinking of gelatin-based hydrogels influences immune and stromal cell behavior and wound healing in female mice. We observe that softer, lightly crosslinked hydrogels promote greater cellular infiltration and result in smaller scars compared to stiffer, heavily crosslinked hydrogels. Using single-cell RNA sequencing, we further show that heavily crosslinked hydrogels increase inflammation and lead to the formation of a distinct macrophage subpopulation exhibiting signs of oxidative activity and cell fusion. Conversely, lightly crosslinked hydrogels are more readily taken up by macrophages and integrated within the tissue. The physical properties differentially affect macrophage and fibroblast interactions, with heavily crosslinked hydrogels promoting pro-fibrotic fibroblast activity that drives macrophage fusion through RANKL signaling. These findings suggest that tuning the physical properties of hydrogels can guide cellular responses and improve healing, offering insights for designing better biomaterials for wound treatment.
Collapse
Affiliation(s)
- Sergei Butenko
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Raji R Nagalla
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | | | - Francesco Palomba
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Li-Mor David
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Ronald Q Nguyen
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Denise Gay
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Axel A Almet
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
| | - Michelle A Digman
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
- Laboratory of Fluorescence Dynamics, The Henry Samueli School of Engineering, University of California, Irvine, CA, USA
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, USA
| | - Philip O Scumpia
- Division of Dermatology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Dermatology, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA
| | - Wendy F Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, University of California Irvine, Irvine, CA, USA.
- Institute for Immunology, University of California, Irvine, Irvine, CA, USA.
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Khanal S, Liu Y, Bamidele AO, Wixom AQ, Washington AM, Jalan-Sakrikar N, Cooper SA, Vuckovic I, Zhang S, Zhong J, Johnson KL, Charlesworth MC, Kim I, Yeon Y, Yoon S, Noh YK, Meroueh C, Timbilla AA, Yaqoob U, Gao J, Kim Y, Lucien F, Huebert RC, Hay N, Simons M, Shah VH, Kostallari E. Glycolysis in hepatic stellate cells coordinates fibrogenic extracellular vesicle release spatially to amplify liver fibrosis. SCIENCE ADVANCES 2024; 10:eadn5228. [PMID: 38941469 PMCID: PMC11212729 DOI: 10.1126/sciadv.adn5228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
Liver fibrosis is characterized by the activation of perivascular hepatic stellate cells (HSCs), the release of fibrogenic nanosized extracellular vesicles (EVs), and increased HSC glycolysis. Nevertheless, how glycolysis in HSCs coordinates fibrosis amplification through tissue zone-specific pathways remains elusive. Here, we demonstrate that HSC-specific genetic inhibition of glycolysis reduced liver fibrosis. Moreover, spatial transcriptomics revealed a fibrosis-mediated up-regulation of EV-related pathways in the liver pericentral zone, which was abrogated by glycolysis genetic inhibition. Mechanistically, glycolysis in HSCs up-regulated the expression of EV-related genes such as Ras-related protein Rab-31 (RAB31) by enhancing histone 3 lysine 9 acetylation on the promoter region, which increased EV release. Functionally, these glycolysis-dependent EVs increased fibrotic gene expression in recipient HSC. Furthermore, EVs derived from glycolysis-deficient mice abrogated liver fibrosis amplification in contrast to glycolysis-competent mouse EVs. In summary, glycolysis in HSCs amplifies liver fibrosis by promoting fibrogenic EV release in the hepatic pericentral zone, which represents a potential therapeutic target.
Collapse
Affiliation(s)
- Shalil Khanal
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Yuanhang Liu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Alexander Q. Wixom
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexander M. Washington
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Shawna A. Cooper
- Biochemistry and Molecular Biology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Ivan Vuckovic
- Metabolomics Core, Mayo Clinic, Rochester, MN 55905, USA
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Iljung Kim
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Yubin Yeon
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
| | - Sangwoong Yoon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of South Korea
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of South Korea
| | - Chady Meroueh
- Department of Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Abdul Aziz Timbilla
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Medical Biochemistry, Faculty of Medicine, Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Usman Yaqoob
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jinhang Gao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
- Lab of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Michael Simons
- Cardiovascular Research Center, Yale University, New Haven, CI 06510, USA
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Bochenek ML, Saar K, Nazari-Jahantigh M, Gogiraju R, Wiedenroth CB, Münzel T, Mayer E, Fink L, Schober A, Hübner N, Guth S, Konstantinides S, Schäfer K. Endothelial Overexpression of TGF-β-Induced Protein Impairs Venous Thrombus Resolution: Possible Role in CTEPH. JACC Basic Transl Sci 2024; 9:100-116. [PMID: 38362348 PMCID: PMC10864968 DOI: 10.1016/j.jacbts.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 02/17/2024]
Abstract
Endothelial cells play a critical role during venous thrombus remodeling, and unresolved, fibrotic thrombi with irregular vessels obstruct the pulmonary artery in patients with chronic thromboembolic pulmonary hypertension (CTEPH). This study sought to identify endothelial mediators of impaired venous thrombus resolution and to determine their role in the pathogenesis of the vascular obstructions in patients with CTEPH. Endothelial cells outgrown from pulmonary endarterectomy specimens (PEA) were processed for mRNA profiling, and nCounter gene expression and immunohistochemistry analysis of PEA tissue microarrays and immunoassays of plasma were used to validate the expression in CTEPH. Lentiviral overexpression in human pulmonary artery endothelial cells (HPAECs) and exogenous administration of the recombinant protein into C57BL/6J mice after inferior Vena cava ligation were employed to assess their role for venous thrombus resolution. RT2 PCR profiler analysis demonstrated the significant overexpression of factors downstream of transforming growth factor beta (TGFβ), that is TGFβ-Induced Protein (TGFBI or BIGH3) and transgelin (TAGLN), or involved in TGFβ signaling, that is follistatin-like 3 (FSTL3) and stanniocalcin-2 (STC2). Gene expression and immunohistochemistry analysis of tissue microarrays localized potential disease candidates to vessel-rich regions. Lentiviral overexpression of TGFBI in HPAECs increased fibrotic remodeling of human blood clots in vitro, and exogenous administration of recombinant TGFBI in mice delayed venous thrombus resolution. Significantly elevated plasma TGFBI levels were observed in patients with CTEPH and decreased after PEA. Our findings suggest that overexpression of TGFBI in endothelial promotes venous thrombus non-resolution and fibrosis and is causally involved in the pathophysiology of CTEPH.
Collapse
Affiliation(s)
- Magdalena L. Bochenek
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Germany
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, RheinMain, Germany
| | - Kathrin Saar
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Berlin, Germany
| | - Maliheh Nazari-Jahantigh
- Institute for Prophylaxis and Epidemiology of Cardiovascular Diseases, Clinic of the University of Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Munich, Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, RheinMain, Germany
| | | | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, RheinMain, Germany
| | - Eckhard Mayer
- Department of Thoracic Surgery, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Ludger Fink
- Institute for Pathology, Cytology and Molecular Pathology, MVZ, Wetzlar, Germany
| | - Andreas Schober
- Institute for Prophylaxis and Epidemiology of Cardiovascular Diseases, Clinic of the University of Munich, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Munich, Germany
| | - Norbert Hübner
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, Berlin, Germany
| | - Stefan Guth
- Department of Thoracic Surgery, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | | | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung, RheinMain, Germany
| |
Collapse
|
5
|
Dipali SS, King CD, Rose JP, Burdette JE, Campisi J, Schilling B, Duncan FE. Proteomic quantification of native and ECM-enriched mouse ovaries reveals an age-dependent fibro-inflammatory signature. Aging (Albany NY) 2023; 15:10821-10855. [PMID: 37899138 PMCID: PMC10637783 DOI: 10.18632/aging.205190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
The ovarian microenvironment becomes fibrotic and stiff with age, in part due to increased collagen and decreased hyaluronan. However, the extracellular matrix (ECM) is a complex network of hundreds of proteins, glycoproteins, and glycans which are highly tissue specific and undergo pronounced changes with age. To obtain an unbiased and comprehensive profile of age-associated alterations to the murine ovarian proteome and ECM, we used a label-free quantitative proteomic methodology. We validated conditions to enrich for the ECM prior to proteomic analysis. Following analysis by data-independent acquisition (DIA) and quantitative data processing, we observed that both native and ECM-enriched ovaries clustered separately based on age, indicating distinct age-dependent proteomic signatures. We identified a total of 4,721 proteins from both native and ECM-enriched ovaries, of which 383 proteins were significantly altered with advanced age, including 58 ECM proteins. Several ECM proteins upregulated with age have been associated with fibrosis in other organs, but to date their roles in ovarian fibrosis are unknown. Pathways regulating DNA metabolism and translation were downregulated with age, whereas pathways involved in ECM remodeling and immune response were upregulated. Interestingly, immune-related pathways were upregulated with age even in ECM-enriched ovaries, suggesting a novel interplay between the ECM and the immune system. Moreover, we identified putative markers of unique immune cell populations present in the ovary with age. These findings provide evidence from a proteomic perspective that the aging ovary provides a fibroinflammatory milieu, and our study suggests target proteins which may drive these age-associated phenotypes for future investigation.
Collapse
Affiliation(s)
- Shweta S. Dipali
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | - Jacob P. Rose
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | | | - Francesca E. Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| |
Collapse
|