1
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
2
|
Plant Occurring Flavonoids as Modulators of the Aryl Hydrocarbon Receptor. Molecules 2021; 26:molecules26082315. [PMID: 33923487 PMCID: PMC8073824 DOI: 10.3390/molecules26082315] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/26/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a transcription factor deeply implicated in health and diseases. Historically identified as a sensor of xenobiotics and mainly toxic substances, AhR has recently become an emerging pharmacological target in cancer, immunology, inflammatory conditions, and aging. Multiple AhR ligands are recognized, with plant occurring flavonoids being the largest group of natural ligands of AhR in the human diet. The biological implications of the modulatory effects of flavonoids on AhR could be highlighted from a toxicological and environmental concern and for the possible pharmacological applicability. Overall, the possible AhR-mediated harmful and/or beneficial effects of flavonoids need to be further investigated, since in many cases they are contradictory. Similar to other AhR modulators, flavonoids commonly exhibit tissue, organ, and species-specific activities on AhR. Such cellular-context dependency could be probably beneficial in their pharmacotherapeutic use. Flavones, flavonols, flavanones, and isoflavones are the main subclasses of flavonoids reported as AhR modulators. Some of the structural features of these groups of flavonoids that could be influencing their AhR effects are herein summarized. However, limited generalizations, as well as few outright structure-activity relationships can be suggested on the AhR agonism and/or antagonism caused by flavonoids.
Collapse
|
3
|
Choi EM, Suh KS, Jung WW, Park SY, Chin SO, Rhee SY, Kim Pak Y, Chon S. Glabridin attenuates antiadipogenic activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in murine 3T3-L1 adipocytes. J Appl Toxicol 2018; 38:1426-1436. [DOI: 10.1002/jat.3664] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 28503 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University; College of Medicine Seoul 02447 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 02447 Republic of Korea
- Department of Endocrinology & Metabolism; Kyung Hee University Hospital; Seoul 02447 Republic of Korea
| |
Collapse
|
4
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
5
|
Hu T, Wang D, Yu Q, Li L, Mo X, Pan Z, Zouboulis CC, Peng L, Xia L, Ju Q. Aryl hydrocarbon receptor negatively regulates lipid synthesis and involves in cell differentiation of SZ95 sebocytes in vitro. Chem Biol Interact 2016; 258:52-8. [PMID: 27544633 DOI: 10.1016/j.cbi.2016.08.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/12/2016] [Accepted: 08/15/2016] [Indexed: 12/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is the receptor for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), benzo(a)pyrene (BaP) and other exogenous compounds. In human sebocytes, TCDD and BaP were found to activate the expression of multiple genes, including cytochrome P450 1A1 (CYP1A1), and inhibit lipid synthesis via AhR, while little is known about endogenous functions of the AhR. In order to expand this knowledge, we analyzed the impact of AhR knockdown on lipid synthesis as well as on cell differentiation of SZ95 sebocytes in vitro and observed that lipid synthesis was significantly induced in AhR silenced SZ95 sebocytes. In line with this result, expression of lipogenesis-associated genes, such as peroxisome proliferator activated receptor (PPAR) δ and PPARγ, was increased. Morphological changes with smaller cells in size but more abundant cytoplasmic lipids were observed in AhR silenced SZ95 sebocytes compared with the AhR activated cells. Besides, the expression of keratin 7, an early sebaceous differentiation marker, was increased, while the expression of the terminal sebocyte differentiation marker epithelial membrane antigen (EMA) was reduced. Moreover, the terminal keratinocyte differentiation markers keratin 10 and involucrin, and the AhR downstream protein CYP1A1 were reduced after AhR silencing. To the best of our knowledge, we provide evidence that in the absence of exogenous ligands, the AhR inhibits lipid synthesis and involves in cell differentiation of human SZ95 sebocytes, which indicates the physiological function of this receptor in human sebocytes.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Duo Wang
- Research Center for Translational Medicine at East Hospital and Division of Medical Genetics, Tongji University School of Medicine, Shanghai, PR China
| | - Qian Yu
- Shanghai Dermatology Hospital, Shanghai, PR China
| | - Li Li
- Research Center for Translational Medicine at East Hospital and Division of Medical Genetics, Tongji University School of Medicine, Shanghai, PR China
| | - Xiaohui Mo
- Shanghai Dermatology Hospital, Shanghai, PR China
| | - Zhanyan Pan
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Dessau, Germany
| | - Luying Peng
- Research Center for Translational Medicine at East Hospital and Division of Medical Genetics, Tongji University School of Medicine, Shanghai, PR China
| | - Longqing Xia
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qiang Ju
- Department of Dermatology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|