1
|
Xu G, Jiang Y, Zhang N, Liu F, Yang G. Triazophos-induced vertical transmission of rice stripe virus is associated with host vitellogenin in the small brown planthopper Laodelphax striatellus. PEST MANAGEMENT SCIENCE 2020; 76:1949-1957. [PMID: 31858699 DOI: 10.1002/ps.5729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Rice stripe virus (RSV) is one of the most serious rice diseases in East Asia. The small brown planthopper (SBPH), Laodelphax striatellus, is an economically important rice pest. SBPH transmits RSV horizontally and vertically, resulting in serious rice economic losses. Exposure to sublethal doses of insecticides can induce many physiological and cellular changes in insects. However, the mechanism underlying triazophos-induced RSV vertical transmission remains unclear. Here, we investigated the role of vitellogenin (Vg) in triazophos-induced RSV vertical transmission. RESULTS RSV vertical transmission rates were significantly induced by sublethal exposure to triazophos. The transcript abundance of viral RNA3 segment (RNA3) and capsid protein (CP) in the ovaries of SBPH were also significantly increased. Triazophos induced the expression level of Vg in L. striatellus (LsVg) and increased the contents of ovarian protein and fat body protein. Knockdown of Vg significantly reduced the expression levels of LsVg and Vg receptor (LsVgR), and decreased RSV accumulations in the ovaries. Double-stranded Vg (dsVg)-mediated down-regulation could be rescued by exposure to triazophos. Vertical transmission rate of the dsVg-injected group was significantly decreased compared with the dsGFP-injected group, and triazophos significantly rescued the RSV vertical transmission rate of the dsVg-injected group. CONCLUSION Our results indicate that triazophos-induced RSV vertical transmission is associated with Vg. This work will help us to further elucidate sublethal doses of insecticides-mediated effects and develop new strategies for pest control. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gang Xu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yu Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Nannan Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqing Yang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Wu J, Ge L, Liu F, Song Q, Stanley D. Pesticide-Induced Planthopper Population Resurgence in Rice Cropping Systems. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:409-429. [PMID: 31610135 DOI: 10.1146/annurev-ento-011019-025215] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Planthoppers are serious rice pests in Asia. Their population resurgence was first reported in the early 1960s, caused mainly by insecticides that indiscriminately killed beneficial arthropods and target pests. The subsequent resurgence involved two mechanisms, the loss of beneficial insects and insecticide-enhanced planthopper reproduction. In this review, we identify two forms of resurgence, acute and chronic. Acute resurgence is caused by traditional insecticides with rapid resurgence in the F1 generation. Chronic resurgence follows application of modern pesticides, including fungicides and herbicides, with low natural enemy toxicity, coupled with stimulated planthopper reproduction. The chemical-driven syndrome of changes leads to later resurgence in the F2 or later generations. Chronic resurgence poses new threats to global rice production. We review findings on the physiological and molecular mechanisms of chronic planthopper resurgence and suggest research directions that may help manage these new threats.
Collapse
Affiliation(s)
- Jincai Wu
- School of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China;
| | - Linquan Ge
- School of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China;
| | - Fang Liu
- School of Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China;
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - David Stanley
- Biological Control of Insects Research Laboratory, US Department of Agriculture, Agricultural Research Service, Columbia, Missouri 65203, USA
| |
Collapse
|
3
|
Zhang X, Ding J, Xu B, Ge LQ, Yang GQ, Wu JC. Long chain fatty acid coenzyme A ligase (FACL) regulates triazophos-induced stimulation of reproduction in the small brown planthopper (SBPH), Laodelphax striatellus (Fallen). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 148:81-86. [PMID: 29891382 DOI: 10.1016/j.pestbp.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
The small brown planthopper (SBPH), Laodelphax striatellus (Fallen) is a major pest insect of rice, wheat, and maize in China and other countries. SBPH not only damage rice plants through sucking plant sap, but also transmits rice virus diseases, for example, striped virus disease (RSV), black streaked dwarf, and maize rough disease virus. Therefore, understanding of pesticide-induced stimulation of reproduction in SBPH is of great significance for the pest management. Our previous study discovered that triazophos (TZP) increased reproduction of SBPH. But the molecular mechanisms are unclear. Here, by using proteomic analysis, we screened and cloned the gene of long chain fatty acid coenzyme A ligase (FACL), and silenced FACL to examine influences of TZP on reproduction and glycerin content in SBPH females. In TZP-treated females vs control females, there were 41 differential proteins in 18 pathways related to reproduction, of which 8 were up-regulated and 33 were down-regulated. TZP + dsFACL eliminated TZP-induced stimulation of reproduction of SBPH females (↓about 73.92%) and decreased glycerin content and body weight (↓about 19.93% and 13.62%). TZP + dsFACL treatment led to reduced expression of FACL (↓about 61.88%). FACL is a key gene of TZP-induced increase of reproduction of SBPH.
Collapse
Affiliation(s)
- Xian Zhang
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jun Ding
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bing Xu
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lin-Quan Ge
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Guo-Qing Yang
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jin-Cai Wu
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
4
|
Ding J, Wu Y, You LL, Xu B, Ge LQ, Yang GQ, Wu JC. Jinggangmycin-suppressed reproduction in the small brown planthopper (SBPH), Laodelphax striatellus (Fallen), is mediated by glucose dehydrogenase (GDH). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 139:73-78. [PMID: 28595925 DOI: 10.1016/j.pestbp.2017.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The small brown planthopper (SBPH), Laodelphax striatellus (Fallen), is a serious pest insect of rice, wheat, and maize in China. SBPH not only sucks plant sap but also transmits plant disease viruses, causing serious damage. These viruses include rice striped virus disease (RSV disease), black streaked dwarf, and maize rough disease virus. SBPH outbreaks are related to the overuse of pesticides in China. Some pesticides, such as triazophos, stimulate the reproduction of SBPH, but an antibiotic fungicide jinggangmycin (JGM) suppresses its reproduction. However, mechanisms of decreased reproduction of SBPH induced by JGM remain unclear. The present findings show that JGM suppressed reproduction of SBPH (↓approximately 35.7%) and resulted in the down-regulated expression of glucose dehydrogenase (GDH). GDH-silenced control females (control+dsGDH) show that the number of eggs laid was reduced by 48.6% compared to control females. Biochemical tests show that the total lipid and fatty acid contents in JGM-treated and control+dsGDH females decreased significantly. Thus, we propose that the suppression of reproduction in SBPH induced by JGM is mediated by GDH via metabolic pathways.
Collapse
Affiliation(s)
- Jun Ding
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - You Wu
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lin-Lin You
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Bin Xu
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Lin-Quan Ge
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Guo-Qing Yang
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jin-Cai Wu
- School of Plant Protection, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
RNA Interference in Insect Vectors for Plant Viruses. Viruses 2016; 8:v8120329. [PMID: 27973446 PMCID: PMC5192390 DOI: 10.3390/v8120329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023] Open
Abstract
Insects and other arthropods are the most important vectors of plant pathogens. The majority of plant pathogens are disseminated by arthropod vectors such as aphids, beetles, leafhoppers, planthoppers, thrips and whiteflies. Transmission of plant pathogens and the challenges in managing insect vectors due to insecticide resistance are factors that contribute to major food losses in agriculture. RNA interference (RNAi) was recently suggested as a promising strategy for controlling insect pests, including those that serve as important vectors for plant pathogens. The last decade has witnessed a dramatic increase in the functional analysis of insect genes, especially those whose silencing results in mortality or interference with pathogen transmission. The identification of such candidates poses a major challenge for increasing the role of RNAi in pest control. Another challenge is to understand the RNAi machinery in insect cells and whether components that were identified in other organisms are also present in insect. This review will focus on summarizing success cases in which RNAi was used for silencing genes in insect vector for plant pathogens, and will be particularly helpful for vector biologists.
Collapse
|