1
|
Gal'chinsky NV, Yatskova EV, Novikov IA, Sharmagiy AK, Plugatar YV, Oberemok VV. Mixed insect pest populations of Diaspididae species under control of oligonucleotide insecticides: 3'-end nucleotide matters. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105838. [PMID: 38582600 DOI: 10.1016/j.pestbp.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 02/21/2024] [Indexed: 04/08/2024]
Abstract
Diaspididae are one of the most serious small herbivorous insects with piercing-sucking mouth parts and are major economic pests as they attack and destroy perennial ornamentals and food crops. Chemical control is the primary management approach for armored scale infestation. However, chemical insecticides do not possess selectivity in action and not always effective enough for the control of armored scale insects. Our previous work showed that green oligonucleotide insecticides (olinscides) are highly effective against armored and soft scale insects. Moreover, olinscides possess affordability, selectivity in action, fast biodegradability, and a low carbon footprint. Insect pest populations undergo microevolution and olinscides should take into account the problem of insecticide resistance. Using sequencing results, it was found that in the mixed populations of insect pests Dynaspidiotus britannicus Newstead and Aonidia lauri Bouche, predominates the population of A. lauri. Individuals of A. lauri comprised for 80% of individuals with the sequence 3'-ATC-GTT-GGC-AT-5' in the 28S rRNA site, and 20% of the population comprised D. britannicus individuals with the sequence 3'-ATC-GTC-GGT-AT-5'. We created olinscides Diasp80-11 (5'-ATG-CCA-ACG-AT-3') and Diasp20-11 (5'-ATA-CCG-ACG-AT-3') with perfect complementarity to each of the sequences. Mortality of insects on the 14th day comprised 98.19 ± 3.12% in Diasp80-11 group, 64.66 ± 0.67% in Diasp20-11 group (p < 0.05), and 3.77 ± 0.94% in the control group. Results indicate that for maximum insecticidal effect it is necessary to use an oligonucleotide insecticide that corresponds to the dominant species. Mortality in Diasp80-11 group was accompanied with significant decrease in target 28S rRNA concentration and was 8.44 ± 0.14 and 1.72 ± 0.36 times lower in comparison with control (p < 0.05) on the 10th and 14th days, respectively. We decided to make single nucleotide substitutions in Diasp20-11 olinscide to understand which nucleotide will play the most important role in insecticidal effect. We created three sequences with single nucleotide transversion substitutions at the 5'-end - Diasp20(5')-11 (A to T), 3'-end - Diasp20(3')-11 (T to A), and in the middle of the sequence - Diasp20(6)-11 (6th nitrogenous base of the sequence; G to C), respectively. As a result, mortality of mixed population of the field experiment decreased and comprised 53.89 ± 7.25% in Diasp20(5')-11 group, 40.68 ± 4.33% in Diasp20(6)-11 group, 35.74 ± 5.51% in Diasp20(3')-11 group, and 3.77 ± 0.94% in the control group on the 14th day. Thus, complementarity of the 3'-end nucleotide to target 28S rRNA was the most important for pronounced insecticidal effect (significance of complementarity of nucleotides for insecticidal effect: 5' nt < 6 nt < 3' nt). As was found in our previous research works, the most important rule to obtain maximum insecticidal effect is complete complementarity to the target rRNA sequence and maximum coverage of target sequence in insect pest populations. However, in this article we also show that the complementarity of 3'-end is a second important factor for insecticidal potential of olinscides. Also in this article we propose 2-step DNA containment mechanism of action of olinscides, recruiting RNase H. The data obtained indicate the selectivity of olinscides and at the same time provide a simple and flexible platform for the creation of effective plant protection products, based on antisense DNA oligonucleotides.
Collapse
Affiliation(s)
- Nikita V Gal'chinsky
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea, Ukraine.
| | - Ekaterina V Yatskova
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens-National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea, Ukraine
| | - Ilya A Novikov
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea, Ukraine
| | - Alexander K Sharmagiy
- Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens-National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea, Ukraine
| | - Yuri V Plugatar
- Department of Natural Ecosystems, Nikita Botanical Garden-National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea, Ukraine
| | - Vladimir V Oberemok
- Department of Molecular Genetics and Biotechnologies, Institute of Biochemical Technologies, Ecology and Pharmacy, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Crimea, Ukraine; Laboratory of Entomology and Phytopathology, Dendrology and Landscape Architecture, Nikita Botanical Gardens-National Scientific Centre of the Russian Academy of Sciences, Yalta 298648, Crimea, Ukraine
| |
Collapse
|
2
|
Chen P, Cai M, Feng YJ, Li C, Dong ZQ, Xiao WF, Tang L, Zhu Y, Tian T, Deng BY, Pan MH, Lu C. Apoptosis-related long non-coding RNA LINC5438 of Bombyx mori promotes the proliferation of BmNPV. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105380. [PMID: 36963947 DOI: 10.1016/j.pestbp.2023.105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Apoptosis, as an important part of the immune response, is one of the core events in the host-virus interaction. Studies have shown that long non-coding RNAs (lncRNAs) play important roles in the process of cell apoptosis and pathophysiology. To investigate the apoptosis-related lncRNAs involved in Bombyx mori nucleopolyhedrovirus (BmNPV) infecting silkworms, transcriptome sequencing was conducted based on silkworm cells infected with BmNPV before and after B. mori inhibitor of apoptosis (Bmiap) gene knockout. A total of 23 differentially expressed lncRNAs were identified as being associated with the mitochondrial apoptosis pathway. Moreover, we demonstrated that B. mori LINC5438 has the function of inhibiting apoptosis in silkworm cells. Overexpression of LINC5438 promoted the proliferation of BmNPV, while interference with LINC5438 inhibited its proliferation, indicating that LINC5438 plays an important role in BmNPV infection. Our results also showed that LINC5438 can regulate the expression of Bmiap, BmDronc, BmICE, and its predicted target gene BmAIF, suggesting that LINC5438 may function through the mitochondrial pathway. These findings provide important insights into the mechanisms of virus-host interaction and the applications of baculoviruses as biological insecticides.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min Cai
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Yu-Jie Feng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Cong Li
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China; Sericultural Research Institute Sichuan Academy of Agricultural Sciences, Nanchong 637000, China
| | - Liang Tang
- Sericulture Technology Promotion Station of Guangxi, Nanning 530007, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Ting Tian
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Bo-Yuan Deng
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Beibei 400715, China.
| |
Collapse
|
3
|
Oberemok VV, Laikova KV, Gal'chinsky NV, Useinov RZ, Novikov IA, Temirova ZZ, Shumskykh MN, Krasnodubets AM, Repetskaya AI, Dyadichev VV, Fomochkina II, Bessalova EY, Makalish TP, Gninenko YI, Kubyshkin AV. DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection. Sci Rep 2019; 9:6197. [PMID: 30996277 PMCID: PMC6470133 DOI: 10.1038/s41598-019-42688-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
Having observed how botanicals and other natural compounds are used by nature to control pests in the environment, we began investigating natural polymers, DNA and RNA, as promising tools for insect pest management. Over the last decade, unmodified short antisense DNA oligonucleotides have shown a clear potential for use as insecticides. Our research has concentrated mainly on Lymantria dispar larvae using an antisense oligoRING sequence from its inhibitor-of-apoptosis gene. In this article, we propose a novel biotechnology to protect plants from insect pests using DNA insecticide with improved insecticidal activity based on a new antisense oligoRIBO-11 sequence from the 5.8S ribosomal RNA gene. This investigational oligoRIBO-11 insecticide causes higher mortality among both L. dispar larvae grown in the lab and those collected from the forest; in addition, it is more affordable and faster acting, which makes it a prospective candidate for use in the development of a ready-to-use preparation.
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Nikita V Gal'chinsky
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Refat Z Useinov
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Ilya A Novikov
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Zenure Z Temirova
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Maksym N Shumskykh
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine.
| | - Alisa M Krasnodubets
- Department of Biochemistry, Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Valeriy V Dyadichev
- Engineering Center, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007, Simferopol, Crimea, Ukraine
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Evgenia Y Bessalova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Tatiana P Makalish
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| | - Yuri I Gninenko
- All-Russian Research Institute for Silviculture and Mechanization of Forestry, Institutskaya Street 15, 141200, Pushkino, Russia
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051, Simferopol, Crimea, Ukraine
| |
Collapse
|
4
|
Oberemok VV, Laikova KV, Gal'chinsky NV, Shumskykh MN, Repetskaya AI, Bessalova EY, Makalish TP, Gninenko YI, Kharlov SA, Ivanova RI, Nikolaev AI. DNA insecticides: Data on the trial in the field. Data Brief 2018; 21:1858-1860. [PMID: 30519607 PMCID: PMC6260318 DOI: 10.1016/j.dib.2018.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022] Open
Abstract
This data article is related to the research articles entitled "The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide" (Oberemok et al., 2016), "Molecular alliance of Lymantria dispar multiple nucleopolyhedrovirus and a short unmodified antisense oligonucleotide of its anti-apoptotic IAP-3 gene: a novel approach for gypsy moth control" (Oberemok et al., 2017), and "Topical treatment of LdMNPV-infected gypsy moth caterpillars with 18 nucleotides long antisense fragment from LdMNPV IAP-3 gene triggers higher levels of apoptosis in infected cells and mortality of the pest" (Oberemok et al., 2017). This data article reports on the significant decrease of survival of L. dispar larvae after contact application of 18 nucleotides long antisense oligoRING fragment in the field experiment and supports perspective of use of DNA insecticides in forests.
Collapse
Affiliation(s)
- V V Oberemok
- Taurida Academy, V.I. Vernadsky Crimean Federal University, 295007, 4 Vernadsky Avenue, Simferopol, Crimea, Ukraine
| | - K V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, 295051, 5/7 Lenin Avenue, Simferopol, Crimea, Ukraine
| | - N V Gal'chinsky
- Taurida Academy, V.I. Vernadsky Crimean Federal University, 295007, 4 Vernadsky Avenue, Simferopol, Crimea, Ukraine
| | - M N Shumskykh
- Taurida Academy, V.I. Vernadsky Crimean Federal University, 295007, 4 Vernadsky Avenue, Simferopol, Crimea, Ukraine
| | - A I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, 4 Vernadsky Avenue, 29500 Simferopol, Crimea, Ukraine
| | - E Yu Bessalova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, 295051, 5/7 Lenin Avenue, Simferopol, Crimea, Ukraine
| | - T P Makalish
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, 295051, 5/7 Lenin Avenue, Simferopol, Crimea, Ukraine
| | - Yu I Gninenko
- All-Russian Research Institute for Silviculture and Mechanization of Forestry, 15 Institutskaya Street, 141200 Pushkino, Russia
| | - S A Kharlov
- Siberian Forest Research Station, 5a/2 Mechanization Street, 625017 Tyumen, Russia
| | - R I Ivanova
- Siberian Forest Research Station, 5a/2 Mechanization Street, 625017 Tyumen, Russia
| | - A I Nikolaev
- Siberian Forest Research Station, 5a/2 Mechanization Street, 625017 Tyumen, Russia
| |
Collapse
|
5
|
Bhattarai UR, Katuwal Bhattarai M, Li F, Wang D. Insights into the Temporal Gene Expression Pattern in Lymantria dispar Larvae During the Baculovirus Induced Hyperactive Stage. Virol Sin 2018; 33:345-358. [PMID: 30046995 DOI: 10.1007/s12250-018-0046-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Baculoviruses are effective biological control agents for many insect pests. They not only efficiently challenge the host immune system but also make them hyperactive for better virus dispersal. Some investigations have focused on the viral mechanisms for induction of such altered response from the host. However, there are no current studies monitoring changes in gene expression during this altered phenotype in infected larvae. The L. dispar multiple nucleopolyhedrovirus (LdMNPV) induces hyperactivity in third instar L. dispar larvae at 3-days post infection (dpi), to continued till 6 dpi. The transcriptome profiles of the infected and uninfected larvae at these time points were analyzed to provide new clues on the response of the larvae towards infection during hyperactivity. Gene ontology enrichment analysis revealed, most of the differentially expressed genes (DEGs) were involved in proteolysis, extracellular region, and serine-type endopeptidase activity. Similarly, Kyoto Encyclopedia of Genes and Genome enrichment analysis showed maximum enrichment of 487 genes of the signal transduction category and neuroactive ligand-receptor interaction sub-category with 85 annotated genes. In addition, enrichment map visualization of gene set enrichment analysis showed the coordinated response of neuroactive ligand-receptor interaction genes with other functional gene sets, as an important signal transduction mechanism during the hyperactive stage. Interestingly all the DEGs in neuroactive ligand-receptor interactions were serine proteases, their differential expression during the hyperactive stage correlated with their conceivable involvement in disease progression and the resulting altered phenotype during this period. The outcome provides a basic understanding of L. dispar larval responses to LdMNPV infection during the hyperactive stage and helps to determine the important host factors involved in this process.
Collapse
Affiliation(s)
- Upendra Raj Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Mandira Katuwal Bhattarai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Fengjiao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China
| | - Dun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Oberemok VV, Laikova KV, Repetskaya AI, Kenyo IM, Gorlov MV, Kasich IN, Krasnodubets AM, Gal'chinsky NV, Fomochkina II, Zaitsev AS, Bekirova VV, Seidosmanova EE, Dydik KI, Meshcheryakova AO, Nazarov SA, Smagliy NN, Chelengerova EL, Kulanova AA, Deri K, Subbotkin MV, Useinov RZ, Shumskykh MN, Kubyshkin AV. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey. Molecules 2018; 23:E1302. [PMID: 29844255 PMCID: PMC6099785 DOI: 10.3390/molecules23061302] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/25/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Antisense oligonucleotides (ASO), short single-stranded polymers based on DNA or RNA chemistries and synthesized in vitro, regulate gene expression by binding in a sequence-specific manner to an RNA target. The functional activity and selectivity in the action of ASOs largely depends on the combination of nitrogenous bases in a target sequence. This simple and natural property of nucleic acids provides an attractive route by which scientists can create different ASO-based techniques. Over the last 50 years, planned and realized applications in the field of antisense and nucleic acid nanotechnologies have produced astonishing results and posed new challenges for further developments, exemplifying the essence of the post-genomic era. Today the majority of ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake. This review critically analyzes some successful cases using the antisense approach in medicine to address severe diseases, such as Duchenne muscular dystrophy and spinal muscular atrophy, and suggests some prospective directions for future research. We also examine in detail the elaboration of unmodified insect-specific DNA insecticides and RNA preparations in the areas of agriculture and forestry, a relatively new branch of ASO that allows circumvention of the use of non-selective chemical insecticides. When considering the variety of successful ASO modifications with an efficient signal-to-noise ratio of action, coupled with the affordability of in vitro oligonucleotide synthesis and post-synthesis procedures, we predict that the next half-century will produce a fruitful yield of tools created from effective ASO-based end products.
Collapse
MESH Headings
- Agriculture/methods
- Animals
- Biological Control Agents/chemical synthesis
- Biological Control Agents/history
- Biological Control Agents/pharmacology
- DNA/antagonists & inhibitors
- DNA/genetics
- DNA/metabolism
- Forestry/methods
- Gene Expression Regulation/drug effects
- History, 20th Century
- History, 21st Century
- Humans
- Larva/drug effects
- Larva/genetics
- Larva/metabolism
- Moths/drug effects
- Moths/genetics
- Moths/growth & development
- Moths/metabolism
- Muscular Atrophy, Spinal/genetics
- Muscular Atrophy, Spinal/metabolism
- Muscular Atrophy, Spinal/pathology
- Muscular Atrophy, Spinal/therapy
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Neuromuscular Agents/chemical synthesis
- Neuromuscular Agents/history
- Neuromuscular Agents/therapeutic use
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Kateryna V Laikova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Anna I Repetskaya
- Botanical Garden named after N.V. Bagrov, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 29500 Simferopol, Crimea.
| | - Igor M Kenyo
- Academy of Bioresources and Environmental Management of V.I. Vernadsky Crimean Federal University, 95492 Agrarnoye, Crimea.
| | - Mikhail V Gorlov
- D. Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russia.
| | - Igor N Kasich
- Rostov State Medical University, Nakhchivan Lane 29, 344022 Rostov-on-Don, Russia.
| | - Alisa M Krasnodubets
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Nikita V Gal'chinsky
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Iryna I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Aleksei S Zaitsev
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Viktoriya V Bekirova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Eleonora E Seidosmanova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Ksenia I Dydik
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anna O Meshcheryakova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Sergey A Nazarov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Natalya N Smagliy
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Edie L Chelengerova
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Alina A Kulanova
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Karim Deri
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Mikhail V Subbotkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| | - Refat Z Useinov
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Maksym N Shumskykh
- Taurida Academy, V.I. Vernadsky Crimean Federal University, Vernadsky Avenue 4, 295007 Simferopol, Crimea.
| | - Anatoly V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, 295051 Simferopol, Crimea.
| |
Collapse
|
7
|
Oberemok VV, Laikova KV, Zaitsev AS, Shumskykh MN, Kasich IN, Gal'chinsky NV, Bekirova VV, Makarov VV, Agranovsky AA, Gushchin VA, Zubarev IV, Kubyshkin AV, Fomochkina II, Gorlov MV, Skorokhod OA. Molecular Alliance of Lymantria dispar Multiple Nucleopolyhedrovirus and a Short Unmodified Antisense Oligonucleotide of Its Anti-Apoptotic IAP-3 Gene: A Novel Approach for Gypsy Moth Control. Int J Mol Sci 2017; 18:E2446. [PMID: 29149051 PMCID: PMC5713413 DOI: 10.3390/ijms18112446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
Baculovirus IAP (inhibitor-of-apoptosis) genes originated by capture of host genes. Unmodified short antisense DNA oligonucleotides (oligoDNAs) from baculovirus IAP genes can down-regulate specific gene expression profiles in both baculovirus-free and baculovirus-infected insects. In this study, gypsy moth (Lymantria dispar) larvae infected with multiple nucleopolyhedrovirus (LdMNPV), and LdMNPV-free larvae, were treated with oligoDNA antisense to the RING (really interesting new gene) domain of the LdMNPV IAP-3 gene. The results with respect to insect mortality, biomass accumulation, histological studies, RT-PCR, and analysis of DNA apoptotic fragmentation suggest that oligoRING induced increased apoptotic processes in both LdMNPV-free and LdMNPV-infected insect cells, but were more pronounced in the latter. These data open up possibilities for promising new routes of insect pest control using antisense phosphodiester DNA oligonucleotides.
Collapse
Affiliation(s)
- Volodymyr V Oberemok
- Taurida Academy, Department of Biochemistry, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Republic of Crimea.
| | - Kateryna V Laikova
- Medical Academy, Department of Biochemistry, V.I. Vernadsky Crimean Federal University, Simferopol 295006, Republic of Crimea.
| | - Aleksei S Zaitsev
- Taurida Academy, Department of Biochemistry, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Republic of Crimea.
| | - Maksym N Shumskykh
- Taurida Academy, Department of Biochemistry, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Republic of Crimea.
| | - Igor N Kasich
- Medical Academy, Department of Pathological Anatomy, V.I. Vernadsky Crimean Federal University, Simferopol 295006, Republic of Crimea.
| | - Nikita V Gal'chinsky
- Taurida Academy, Department of Biochemistry, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Republic of Crimea.
| | - Viktoriya V Bekirova
- Taurida Academy, Department of Biochemistry, V.I. Vernadsky Crimean Federal University, Simferopol 295007, Republic of Crimea.
| | - Valentin V Makarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.
| | - Alexey A Agranovsky
- Department of Virology, Lomonosov Moscow State University, Moscow 119991, Russia.
- Center of Bioengineering, Russian Academy of Sciences, Moscow 117312, Russia.
| | - Vladimir A Gushchin
- Department of Virology, Lomonosov Moscow State University, Moscow 119991, Russia.
- Translational Biomedicine Laboratory, N. F. Gamaleya Federal Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia.
| | - Ilya V Zubarev
- Institute of Natural Sciences, Ural Federal University, Chelyabinsk 620083, Russia.
| | - Anatoly V Kubyshkin
- Medical Academy, Department of General and Clinical Pathophysiology, V.I. Vernadsky Crimean Federal University, Simferopol 295006, Republic of Crimea.
| | - Iryna I Fomochkina
- Medical Academy, Department of General and Clinical Pathophysiology, V.I. Vernadsky Crimean Federal University, Simferopol 295006, Republic of Crimea.
| | - Mikhail V Gorlov
- Department of Polymer Chemistry, Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia.
| | - Oleksii A Skorokhod
- University of Torino, 10124 Torino, Italy.
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.
| |
Collapse
|
8
|
Data for increase of Lymantria dispar male survival after topical application of single-stranded RING domain fragment of IAP-3 gene of its nuclear polyhedrosis virus. Data Brief 2016; 7:514-7. [PMID: 27054151 PMCID: PMC4796710 DOI: 10.1016/j.dib.2016.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/01/2016] [Accepted: 03/01/2016] [Indexed: 11/24/2022] Open
Abstract
This data article is related to the research article entitled "The RING for gypsy moth control: topical application of fragment of its nuclear polyhedrosis virus anti-apoptosis gene as insecticide" [1]. This article reports on significantly higher survival of gypsy moth Lymantria dispar male individuals in response to topical application of single-stranded DNA, based on RING (really interesting new gene) domain fragment of LdMNPV (L. dispar multicapsid nuclear polyhedrosis virus) IAP-3 (inhibitor of apoptosis) gene and acted as DNA insecticide.
Collapse
|